首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊集与区域生长算法的胎儿下腔静脉血管超声分割
引用本文:丁明跃,曹朋鑫,滕贷宇,段明娟. 基于模糊集与区域生长算法的胎儿下腔静脉血管超声分割[J]. 北京理工大学学报, 2019, 39(S1): 62-65
作者姓名:丁明跃  曹朋鑫  滕贷宇  段明娟
作者单位:华中科技大学 生命科学与技术学院生物医学工程系 湖北, 武汉 430074,华中科技大学 生命科学与技术学院生物医学工程系 湖北, 武汉 430074,华中科技大学 生命科学与技术学院生物医学工程系 湖北, 武汉 430074,华中科技大学 生命科学与技术学院生物医学工程系 湖北, 武汉 430074
摘    要:本方研究了胎儿下腔静脉血管在B型超声图像中的分割问题.B型超声使用方便,在临床中有广泛使用,但其图像有噪声多、对比度差的缺陷.为了有效地在B型超声图像中分割血管,提出了一种基于模糊集与区域生长算法的分割算法;该算法预先使用模糊集算法处理,以提高图像对比度;并使用基于梯度改进的自适应区域生长算法进行分割.实验以医生的手工分割结果作为金标准,并与阈值分割和水平集算法进行了对比.实验表明,该方法的准确度和稳定性高于阈值分割和水平集分割方法结果.

关 键 词:下腔静脉  区域生长  模糊集  图像分割
收稿时间:2018-10-20

A Segmentation Algorithm Based on Fuzzy Sets and Region Growth
DING Ming-yue,CAO Peng-xin,TENG Dai-yu and DUAN Ming-juan. A Segmentation Algorithm Based on Fuzzy Sets and Region Growth[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2019, 39(S1): 62-65
Authors:DING Ming-yue  CAO Peng-xin  TENG Dai-yu  DUAN Ming-juan
Affiliation:College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
Abstract:A segmentation method was studied for the inferior vena cava of fetus in B-mode ultrasound images in this paper. B-mode ultrasound is a technique widely used in clinic for its convenience, but the images of that have the defect of high noise and low contrast. To effectively segment blood vessels in B-mode ultrasound images, in this paper, a segmentation algorithm based on fuzzy sets and region growth algorithm was presented. A fuzzy set algorithm was used to improve the image contrast in advance, and then the adaptive region growth algorithm was presented based on gradient to segment the image. In this paper, taking the doctor''s manual segmentation result as the gold standard, the threshold segmentation and level set algorithm were compared. The experiments show that, the accuracy and stability of this method are higher than threshold segmentation and level segmentation.
Keywords:inferior vena cava  region growth algorithm  fuzzy sets  image segmentation
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号