首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scale dependence of direct shear tests
Authors:Qiang Zhou  Hayley H Shen  Brian T Helenbrook  HongWu Zhang
Institution:1 Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China; 
2 Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699-5710, USA; 
3 Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13699-5725, USA
Abstract:Direct shear test has been widely used to measure the shear strength of soils and other particulate materials in industry because of its simplicity. However, the results can be dependent on the specimen size. The ASTM (American Society for Testing and Materials) publications suggest that for testing soils the shear box should be at least ten times the diameter of the largest particle and the height of the box should be no more than half of its diameter. These guidelines are empirically based. A series of two-dimensional numerical direct shear tests are performed to investigate this scaling effect. By ana-lyzing the bulk friction, particle translation and rotation, percentage of sliding, average volume (area) and shear strain and the evolution of the shear band, we find that the traditional guidelines for direct shear tests are questionable. Scaling dependency of bulk friction on the property of granular materials is clearly present. Our current analysis points out that the scaling effects can vary significantly de-pending on the particle properties other than their sizes. Of all the parameters we observed, particle rotation appears to have a decisive correlation with the bulk friction. Formation of a shear band is universal. As the shearing progresses, particle rotation begins to concentrate near the shear plane. By defining the width of a shear band as the standard deviation of the distribution of translational gradient or the standard deviation of the distribution of particle rotation, quantitative evolutions of shear band are presented. Both measures of the shear band width dropped rapidly during pre-failure stage. After peak stress both measures begin to approach steady state as the bulk friction stabilizes to the residual stage. These observations suggest that structure formation inside the shear band controls the scaling effect.
Keywords:granular material  direct shear test  scaling effect
本文献已被 维普 SpringerLink 等数据库收录!
点击此处可从《中国科学通报(英文版)》浏览原始摘要信息
点击此处可从《中国科学通报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号