首页 | 本学科首页   官方微博 | 高级检索  
     

基于选择性的贝叶斯分类器集成方法
引用本文:郑建军,刘炜,刘琼昕,刘玉树. 基于选择性的贝叶斯分类器集成方法[J]. 北京理工大学学报, 2003, 23(6): 724-727
作者姓名:郑建军  刘炜  刘琼昕  刘玉树
作者单位:北京理工大学,信息科学技术学院计算机科学工程系,北京,100081;中软网络技术股份有限公司,北京,100081
基金项目:国家部委预研基金;101405033;
摘    要:提出一种基于选择性的贝叶斯分类器集成方法.该方法为避免数据预处理时的属性约简对分类效果的直接影响,在训练集上通过随机属性选取生成若干属性子集,并以这些子集训练不同的贝叶斯分类器,进而采用遗传算法优选贝叶斯分类器集成,其适应度函数综合了分类器的精度和差异度两项指标.实验中,将该方法与已有方法在UCI的标准数据集上进行了性能比较,并将该方法用于C^3I系统中的威胁度估计。

关 键 词:贝叶斯分类器集成  随机属性选择  遗传算法  数据挖掘
文章编号:1001-0645(2003)06-0724-04
收稿时间:2002-11-26
修稿时间:2002-11-26

A Selective Approach for an Ensemble of Simple Bayesian Classifiers
ZHENG Jian-jun,LIU Wei,LIU Qiong-xin and LIU Yu-shu. A Selective Approach for an Ensemble of Simple Bayesian Classifiers[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2003, 23(6): 724-727
Authors:ZHENG Jian-jun  LIU Wei  LIU Qiong-xin  LIU Yu-shu
Affiliation:ZHENG Jian-jun~1,LIU Wei~2,LIU Qiong-xin~1,LIU Yu-shu~1
Abstract:To avoid the influence of feature reduction from data pre-processing on the performance of classification, a selective approach was proposed for an ensemble of simple Bayesian classifiers(ESBC), making use of random feature selection to generate several feature subsets from the whole training set, and obtained different simple Bayesian classifiers(SBCs) with the feature subsets, and then optimized the ESBC using genetic algorithms (GA), wherein the fitness function of GA involved the accuracy and diversity of SBCs. In the experiments, this approach was compared with existing methods in their performance through some standard data sets from the UCI machine learning repository, and was applied to the threat-degree estimation in C 3I.
Keywords:ensemble of simple Bayesian classifiers  random feature selection  genetic algorithm  data mining
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号