首页 | 本学科首页   官方微博 | 高级检索  
     

高阶修正Camassa-Holm方程的Cauchy问题
引用本文:王红军,闫威. 高阶修正Camassa-Holm方程的Cauchy问题[J]. 河南师范大学学报(自然科学版), 2014, 0(3): 1-4
作者姓名:王红军  闫威
作者单位:河南师范大学数学与信息科学学院;
基金项目:河南省基础与前沿技术研究项目(122300410414;132300410432)
摘    要:主要证明一类高阶修正的Camassa-Holm方程拥有哈密顿结构和建立在H2(R)适定性结果.首先证明高阶修正的Camassa-Holm方程拥有两个重要的守恒律.然后利用这两个重要的守恒律证明高阶修正的Camassa-Holm方程拥有哈密顿结构.并且使用Kato理论,证明高阶修正的Camassa-Holm方程在Hs(R)(s>3/2)中是局部适定的;利用两个重要的守恒律得到了一个重要的先验估计.结合局部适定性结果以及先验估计,对于初值u0∈H2(R),证明高阶修正的Camassa-Holm方程在H2(R)中是整体适定的.

关 键 词:高阶修正的Camassa-Holm方程  哈密顿结构  守恒律  局部适定  整体适定

Cauchy Problem of Higher-order Modified Camassa-Holm Equation
WANG Hongjun;YAN Wei. Cauchy Problem of Higher-order Modified Camassa-Holm Equation[J]. Journal of Henan Normal University(Natural Science), 2014, 0(3): 1-4
Authors:WANG Hongjun  YAN Wei
Affiliation:WANG Hongjun;YAN Wei;College of Mathematics and Information Science,Henan Normal University;
Abstract:In this paper,we mainly prove that the higher-order modified Camassa-Holm equation possesses the Hamitonian structure and establishes the global well-posedness result in H2(R).Firstly,it is shown that the higher-order modified Camassa-Holm equation possesses two important conseravtion laws.Then,we prove that the higher-order modified CamassaHolm equation possesses the Hamitonian structure with the aid of two important conservation laws.By using Kato's theory,we prove that the Cauchy problem for the higher-order modified Camassa-Holm equation is locally well-posed for the initial data in Hs(R),s>3/2.By using the two important conserved laws,we derive a prior estimate.Combining the prior estimate with the local well-posedness result,we derive the global well-posendess result of the Cauchy problem for the higher-order modified Camassa-Holm equation is globally well-posed for the initial data in H2(R).
Keywords:higher-order modified camassa-Holm equation  Hamiltonian structure  conseravtion laws  local well-posedness  global well-posedness
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号