首页 | 本学科首页   官方微博 | 高级检索  
     

三维连接系数矩阵的脉冲耦合神经网络彩色图像分割
引用本文:王 霞,郭 林,王蒙军. 三维连接系数矩阵的脉冲耦合神经网络彩色图像分割[J]. 科学技术与工程, 2015, 15(6): 231-235
作者姓名:王 霞  郭 林  王蒙军
作者单位:1. 河北工业大学信息工程学院,天津,300401
2. 河北工业大学信息工程学院,天津300401;河北工业大学电子材料与器件天津市重点实验室,天津300401
基金项目:河北省高等学校自然科学研究重点基金项目
摘    要:
提出三维连接系数矩阵的脉冲耦合神经网络(3D-PCNN)模型,将二维连接系数矩阵扩展成三维,值取空间欧氏距离的倒数,提出指数上升的动态阈值。利用神经元脉冲同步发放特性和自动波特性,直接分割彩色图像。结果表明,3D-PCNN算法与其他分割算法相比,运行时间减少了25%以上;该算法能够将不同区域信息以多层次彩色显示,改变RGB分量输入顺序时,同样可以分辨出更多的图像细节信息,分割精度高。

关 键 词:彩色图像分割  脉冲耦合神经网络  三维连接系数矩阵  三维立体脉冲耦合神经网络
收稿时间:2014-10-08
修稿时间:2014-10-25

Color image segmentation based on Pulse Coupled Neural Network with 3-D weighting matrix
Wang Xi,and Wang Mengjun. Color image segmentation based on Pulse Coupled Neural Network with 3-D weighting matrix[J]. Science Technology and Engineering, 2015, 15(6): 231-235
Authors:Wang Xi  and Wang Mengjun
Affiliation:Hebei University of Technology
Abstract:
A Pulse Coupled Neural Network with 3-D weighting matrix is presented in this paper, two-dimensional weighting matrix is expanded to three-dimensional weighting matrix in PCNN model, values are adopted as reciprocal of neural to neural Euclidean distance, iterative threshold is modified as index increased dynamic threshold, the auto-wave spreading characters which generated by similar neurons firing synchronously is used for color image segmentation directly. Experiments are carried out based on standard color image, comparing with other 3D segmentation method, experimental results show that more particulars of color image are preserved by color image segmentation based on the three-dimensional weighting matrix, running time is reduced by more than 25%, different pixels with same color are segmented out and displayed with multi-gradation without improving computational consuming. When the input sequence of RGB component is changed, also segmented more details, have high segmentation accuracy.
Keywords:Color image segmentation   Pulse Coupled Neural Network   Three-dimensional weighting matrix   Three-dimensional pulse coupled neural networks
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号