首页 | 本学科首页   官方微博 | 高级检索  
     

求解一类广义混合变分不等式组的迭代算法
引用本文:万波,王文惠. 求解一类广义混合变分不等式组的迭代算法[J]. 内蒙古大学学报(自然科学版), 2010, 41(1)
作者姓名:万波  王文惠
作者单位:重庆工商大学数学与统计学院,重庆,400067
基金项目:重庆市科委自然科学基金计划资助项目(CSTC(2009BB3372))
摘    要:在Hilbert空间中,引入和研究了一类包含n个不同算子和n个不同泛函的广义混合变分不等式组,利用η-次微分算子的预解式技术,给出了一个求解此类变分不等式组的显式n步迭代算法;最后证明了该算法在适当的条件下收敛.所得的结果推广和改进了目前一些文献只讨论了包含一个非线性算子的变分不等式组以及所提出算法是隐式的结果.

关 键 词:变分不等式组  迭代算法  松弛强制  Lipschitzian连续  

Iterative Methods for a System of Generalized Mixed Variational Inequalities
WAN Bo,WANG Wen-hui. Iterative Methods for a System of Generalized Mixed Variational Inequalities[J]. Acta Scientiarum Naturalium Universitatis Neimongol, 2010, 41(1)
Authors:WAN Bo  WANG Wen-hui
Affiliation:College of Mathematics and Statistics/a>;Chongqing Technology and Business University/a>;Chongqing 400067/a>;China
Abstract:A new system of generalized mixed variational inequalities involving n different operators and n different functions is introduced and studied in Hilbert space.By employing the resolvent operator technique of η-subdifferential operator,a new explicit n-step iterative method for this system of generalized mixed variational inequalities was suggested and analyzed.The new iterative method converges under certain mild conditions.The result extends some documents which study the system of variational inequlities including only one nonlinear operator and also improves the result to show the method is implicit.
Keywords:system of variational inequality  iterative method  relaxed cocoercive  Lipschitzian continuous  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号