首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度神经网络的语音情感识别方法
引用本文:杨明极,张家彬. 基于深度神经网络的语音情感识别方法[J]. 科学技术与工程, 2019, 19(8)
作者姓名:杨明极  张家彬
作者单位:哈尔滨理工大学 测控技术与通信工程学院,哈尔滨理工大学 测控技术与通信工程学院
摘    要:语音情感识别是人机交互的重要方向,可广泛应用于人机交互和呼叫中心等领域,有很大应用价值。近年来,深度神经网络在识别情感方面取得了巨大成功,但现有方法对高层语音特征提取会丢失大量原始信息并且识别准确率不高,本文提出了一种新的语音情感识别方法,由卷积神经网络从原始信号中提取特征,并在其堆叠一个2层长短时记忆神经网络,最终识别准确率达到91.74%,本文方法显著优于基于EMO-DB数据集等其他方法。

关 键 词:语音情感识别  深度学习  卷积神经网络  长短时记忆神经网络
收稿时间:2018-11-02
修稿时间:2018-12-28

Method research of speech emotion recognition based on deep neural networks
YANG Ming-ji and. Method research of speech emotion recognition based on deep neural networks[J]. Science Technology and Engineering, 2019, 19(8)
Authors:YANG Ming-ji and
Affiliation:School of Measure-control Technology and Communications Engineering,Harbin University of Science and Technology,Harbin,150080,
Abstract:Speech emotion recognition is an important direction of human-computer interaction. It can be widely used in human-computer interaction and call center fields, and has great application value. In recent years, deep neural networks have achieved great success in recognizing emotions. However, the existing methods for high-level speech feature extraction will lose a lot of original information and the recognition accuracy is not high. This paper proposes a new speech emotion recognition method. The convolutional neural network extracts features from the original signal and stacks a 2-layer long-term memory neural network. The final recognition accuracy is 91.74%. This method is significantly better than other methods based on EMO-DB database.
Keywords:speech emotion recognition   deep learning   CNN   LSTM
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号