首页 | 本学科首页   官方微博 | 高级检索  
     

神经元网络理论在乙烯精馏塔成分估计中的应用
引用本文:丁利华 俞金寿. 神经元网络理论在乙烯精馏塔成分估计中的应用[J]. 华东理工大学学报(自然科学版), 1995, 21(6): 725-729
作者姓名:丁利华 俞金寿
作者单位:上海石油化工高等专科学校,华东理工大学自动化研究所
摘    要:针对前馈神经元网络误差反向传播算法(BP算法)收敛速度慢,且常常收敛于局部极小值等缺陷,提出了一种基于变步长、加压缩因子的共轭梯度搜索的快速学习算法。与标准的BP法相比,该方法不仅学习收敛速度快,而且精度也有所提高。通过对乙烯精馏塔成分估计的应用表明,该方法比最小二乘估计法具有更好的外推性。

关 键 词:神经网络 学习算法 精馏塔 乙烯

Application of Neural Network Theory in the Estimation of Ethylene Distillation Column Components
Ding Lihua. Application of Neural Network Theory in the Estimation of Ethylene Distillation Column Components[J]. Journal of East China University of Science and Technology, 1995, 21(6): 725-729
Authors:Ding Lihua
Abstract:Based on the search of conjugate gradient which has changed steps and com-pressibility factors,a new fast learning method is proposed countering the drawbacks of theslow convergent speed and the local minimun of BP method. By comparison with BP methodalgorithm, the new method has not only faster learning speed but also higher accuracy,Itshows that the exptrapolation of the new algorithm is better than that of the least squaremethod in estimation some distillation column.
Keywords:neural network  learning method  BP algorithm  distillation cloumn  leastsquare method  conjugate gradient method
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号