首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reestablishment of the inactive X chromosome to the ground state through cell fusion-induced reprogramming
Authors:Hyun Woo Choi  Jong Soo Kim  Hyo Jin Jang  Sol Choi  Jae-Hwan Kim  Hans R Sch?ler  Jeong Tae Do
Institution:1. Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
2. Department of Biomedical Science, CHA University, 605-21 Yoeksam 1-dong, Gangnam-gu, Seoul, 135-081, Republic of Korea
4. Department of Biomedical Science, CHA University, Pochan-si, Gyeonggi-do, Republic of Korea
3. Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, R?ntgenstrasse 20, 48149, Münster, Germany
Abstract:The restricted gene expression pattern of a differentiated cell can be reversed by fusion of the somatic cell with a more developmentally potent cell type, such as an embryonic stem (ES) cell. During this reprogramming process, somatic cells obtain most of the characteristics of pluripotent cells. Reactivation of an inactive X chromosome (Xi) is an important epigenetic marker confirming the pluripotent reprogramming of somatic cells. Female somatic cells contain one active X chromosome (Xa) and one Xi, and following the fusion of these cells with male ES cells, the Xi becomes activated, resulting in XaXaXaY fusion hybrid cells. To monitor Xi reactivation, transgenic female neural stem cells (fNSCs) carrying a green fluorescent protein (GFP) reporter gene expressed on the Xa (X-GFP), but not on the Xi, were used for reprogramming. XaXiGFP NSCs, whose GFP reporter was silenced, were fused with HM1 ES cells (XY) to induce pluripotent reprogramming. The XiGFP of NSCs were found to be activated on day 4 post-fusion, indicating reactivation of the Xi. Hybrid cells showed pluripotent cell-specific characteristics cells including inactivation of the NSC marker Nestin, DNA demethylation of Oct4, DNA methylation of Nestin, and reactivation of the Xi. Following differentiation of the (GFP-positive) hybrid cells through embryoid body formation, the proportion of GFP-negative cells was found to be approximately 26?%, indicating that there was random inactivation of one of the three Xas. Here, we showed that the Xi of somatic cells is reprogrammed to the Xa state and that cellular differentiation occurs randomly, i.e., regardless of the Xa or Xi state, indicating that the memory of the Xi of somatic cells has been erased and reset to the ground state (i.e., inner cell mass-like state), indicating that random X-chromosome inactivation occurs upon differentiation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号