首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于先验知识约束的车牌字符分割新算法
引用本文:方兴林,方云楼. 一种基于先验知识约束的车牌字符分割新算法[J]. 重庆工商大学学报(自然科学版), 2012, 29(8): 42-46
作者姓名:方兴林  方云楼
作者单位:1. 黄山学院经济管理学院,安徽黄山,245041
2. 安徽医科大学卫生管理学院,合肥,230032
基金项目:黄山学院校级科学研究项目
摘    要:车牌字符分割是车牌自动识别系统的三大核心技术之一,字符分割是字符识别的基础;针对传统的基于连通域分割字符算法计算量大、处理时间长的不足之处,在此提出了一种改进的算法,充分利用先验知识进行字符粗分割,在此基础上再利用连通域法最终实现字符完整分割,同时利用先验知识改进了传统的迭代法求二值化阈值算法,减少了迭代次数;实验表明:在此提出的字符分割算法在准确提取了车牌字符的前提下,大大缩短了处理时间,满足了实时性要求。

关 键 词:字符分隔  二值化  连通域  先验知识

A New License Plate Chracter Segmentation Algorithm Based on Priori Knowledge Constraints
FANG Xing-lin,FANG Yun-lou. A New License Plate Chracter Segmentation Algorithm Based on Priori Knowledge Constraints[J]. Journal of Chongqing Technology and Business University:Natural Science Edition, 2012, 29(8): 42-46
Authors:FANG Xing-lin  FANG Yun-lou
Affiliation:1.School of Economics and Management,Huangshan University,Anhui Huangshan 245041,China; 2.School of Health Management,Anhui Medical University,Hefei 230032,China)
Abstract:The license plate character segmentation is one of the three key technologies of the automatic license plate recognition system and the character segmentation is the foundation of the character recognition.The large amount of calculations and a long time for processing are the drawbacks of traditional character segmentation algorithm based on the connected domain character segmentation algorithm,so this paper presents an improved algorithm,which makes full use of priori knowledge for character initial segmentation,and then realizes complete character ssegmentation based on the connected domain meanwhile,this paper improves the traditional iteration binaryzation threshold algorithm by the priori knowledge,reducing iteration times.The experimental results show that the character segmentation algorithm provided by this paper greatly cuts down the processing time and meets real time requirement under the premise of accurate extraction of license plate character.
Keywords:character segmentation  binaryzation  connected domain  priori knowledge
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆工商大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆工商大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号