首页 | 本学科首页   官方微博 | 高级检索  
     

基于K-均值聚类的朴素贝叶斯网络分类模型
引用本文:刘亚辉,王越,谭暑秋. 基于K-均值聚类的朴素贝叶斯网络分类模型[J]. 重庆工商大学学报(自然科学版), 2012, 29(8): 36-41
作者姓名:刘亚辉  王越  谭暑秋
作者单位:重庆理工大学计算机科学与工程学院,重庆,400054
基金项目:重庆市科技攻关资金资助项目
摘    要:针对朴素贝叶斯网络分类模型在处理高维大数据量时的效率偏低和准确率有待提高的问题,结合主元分析法与K-均值聚类算法构造出了一个改进的朴素贝叶斯网络分类模型;摒弃了非类属性变量相对于类属性变量相对独立的前提条件,算法首先用主元分析法在对数据集的信息量尽量保存的同时进行了降维操作,使得算法可以着重于进行分类问题;算法还提出了一个"相对融合点"的概念,有效地提高了算法的性能;最后对算法的性能进行了分析,并将改进的算法应用到实际的数据集进行实验,用算法产生的分类结果对数据集中产生的一些缺失数据进行修补。

关 键 词:贝叶斯网络分类  朴素贝叶斯网络  K-均值聚类  数据挖掘

A Naive Bayesian Network Classification Model Based on K-means Clustering
LIU Ya-hui,WANG Yue,TAN Shu-qiu. A Naive Bayesian Network Classification Model Based on K-means Clustering[J]. Journal of Chongqing Technology and Business University:Natural Science Edition, 2012, 29(8): 36-41
Authors:LIU Ya-hui  WANG Yue  TAN Shu-qiu
Affiliation:(College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)
Abstract:According to the low efficiency and low accuracy of the naive Bayesian network classification model in dealing with large number of high-dimensionaldata,by combining Principal Component Analysis and K-means clustering algorithm,this paper gives an improved Naive Bayesian network calssification model.The model abandoned the premise for the relative independence between non-calss attribute variables and class attribute variables.Firstly,we use principal component analysis to reduce the dimensionality of the data set,so the algorithm can focus on the classification problem.The algotithm has also proposed aconcept called "relative fusion point" to effectively improve the performance of the algorithm.Finally,the performance of the algorithm is analyzed,and the improved algorithm is applied to the actual data set for experiment to repair the missing data of the data set,the results show that the algorithm is effective.
Keywords:Bayesian network classification  Naive Bayesian network  K-means clustering  data mining
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆工商大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆工商大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号