首页 | 本学科首页   官方微博 | 高级检索  
     

乘法半群为逆半群的半环
引用本文:邵勇,赵宪钟,潘秀娟. 乘法半群为逆半群的半环[J]. 西北大学学报(自然科学版), 2006, 36(3): 345-347
作者姓名:邵勇  赵宪钟  潘秀娟
作者单位:西北大学数学系 陕西西安710069
基金项目:陕西省自然科学研究基金资助项目(2003A10),陕西省教育厅自然科学专项基金资助项目(02JK053)
摘    要:目的求证加法导出是半格、乘法导出是逆半群的半环成为分配格的充要条件。方法加法半群和乘法半群上的偏序以及二者之间的关系。结果给出了该类半环成为分配格的几个等价命题。结论推广了双半格成为分配格的一些结果。

关 键 词:半群  半环  半格  分配格  偏序关系
文章编号:1000-274X(2006)03-0345-03
收稿时间:2004-02-09
修稿时间:2004-02-09

Semirings whose multiplicative reduct is inverse semigroup
SHAO Yong,ZHAO Xian-zhong,PAN Xiu-juan. Semirings whose multiplicative reduct is inverse semigroup[J]. Journal of Northwest University(Natural Science Edition), 2006, 36(3): 345-347
Authors:SHAO Yong  ZHAO Xian-zhong  PAN Xiu-juan
Abstract:Aim In order to prove a semiring whose additive reduct is a semilattice and multiplicative reduct is a inverse semigroup to be a distributive lattice.Methods Using partial orders on multiplicative reduct and additive reduct and relations between two partial orders.Results Some equivalent statements are obtained concerning a semiring becoming a distributive lattice.Conclusion Some known results about bi-semilattice becoming distributive lattice are expanded.
Keywords:semigroups  semirings  semilattices  distributive lattices  partial ordered relations
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号