摘 要: | 为提高风电功率预测的准确性,提出了一种基于数据特征提取和麻雀算法优化双向长短期记忆网络(sparrow search algorithm optimised bi-directional long and short-term memory network,SSA-BiLSTM)短期风电功率预测模型。首先根据皮尔逊相关系数(Pearson correlation coefficient,PCC)分析风电数据中各影响因素与风电功率之间的相关性,根据计算结果将功率无关的因素去除。然后,采用自适应噪声完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将原始风电功率序列进行分解,得到一系列子序列分量。再将所有子序列输入麻雀算法(sparrow search algorithm,SSA)优化的双向长短期记忆(bi-directional long short-term memory,BiLSTM)模型中进行预测,根据所得预测值对风速序列进行修正。将修正所得的风速序列与风电功率...
|