基于双自适应滑动时间窗滚动轴承故障预测模型 |
| |
作者姓名: | 郭基联 张保山 周章文 李波 刘晓欣 |
| |
作者单位: | 1. 空军工程大学航空工程学院,西安,710038;
2. 91504部队,浙江台州,318050;3.93786部队,河北张家口,075000 |
| |
摘 要: | 针对传统方法和基于神经网络方法在滚动轴承故障预测中存在的问题,提出一种双自适应滑动时间窗故障预测模型。首先,通过设置能够去除相关性的状态估计非线性算子,将滚动轴承振动信号映射为能够表征其退化状态的故障特征—故障程度指标DR。其次,以损失函数为判据,设置模型参数自适应更新机制,以及建立能够自适应选取数据长度的滑动时间窗口。最后,通过西安交通大学发布的滚动轴承全寿命周期数据,模拟实际中突发性故障和渐发性故障综合作用下的故障发生情况,验证了所提出的故障预测模型的有效性。实验结果表明,提出的预测模型能够准确判断滚动轴承退化阶段的开始时刻和故障时刻,真实反映滚动轴承性能退化的趋势,预测误差仅为0.068%,预测时间仅占2次故障间隔时间的1.385%,满足复杂工况下滚动轴承故障预测的需求。
|
关 键 词: | 滚动轴承 故障预测 滑动时间窗 自适应 |
|
| 点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文 |
|