首页 | 本学科首页   官方微博 | 高级检索  
     

一维非线性弦平衡方程的有限元两重网格算法
引用本文:张爱君,秦新强,焦建英,魏红记. 一维非线性弦平衡方程的有限元两重网格算法[J]. 西安理工大学学报, 2007, 23(3): 298-300
作者姓名:张爱君  秦新强  焦建英  魏红记
作者单位:西安理工大学,理学院,陕西,西安,710048
基金项目:西安理工大学校科研和教改项目
摘    要:针对一维非线性弦的平衡方程,构造了有限元两重网格算法,该算法只需要在粗网格上进行非线性迭代,而在所需要求解的细网格上进行一次线性运算即可。与非线性迭代直接求解结果进行对比可知,有限元两重网格算法在保持了计算精度的前提下,所用的时间更短,从而证明了该算法是一种求解非线性问题的高效方法。

关 键 词:非线性  弦平衡方程  有限元  两重网格  收敛性
文章编号:1006-4710(2007)03-0298-03
修稿时间:2007-03-27

Finite-Element Two-Grid Algorithm of 1D Nonlinear Chord Balance Equation
ZHANG Ai-jun,QIN Xin-qiang,JIAO Jian-ying,WEI Hong-ji. Finite-Element Two-Grid Algorithm of 1D Nonlinear Chord Balance Equation[J]. Journal of Xi'an University of Technology, 2007, 23(3): 298-300
Authors:ZHANG Ai-jun  QIN Xin-qiang  JIAO Jian-ying  WEI Hong-ji
Abstract:For one dimensional nonlinear chord balance equation,a two-grid method of finite-element algorithm is constructed.This algorithm needs only to have the nonlinear iteration executed on the coarse grid,while only one linear operation should be carried out on the fine-grid solution required.It can be known from the contrast with the results obtained from the non-linear direct iterative solution that in the prerequisite of maintaining calculation accuracy,the finite-element two-grid algorithm can use the shorter time,whereby proving that this algorithm is a kind of high-efficient method for obtaining the nonlinear solution to the problems.
Keywords:nonlinear  chord balance equation  finite-element  two-grid method  convergence
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号