首页 | 本学科首页   官方微博 | 高级检索  
     

基于非下采样Contourlet变换的 SVM多聚焦图像融合
引用本文:薛广月,任雪梅. 基于非下采样Contourlet变换的 SVM多聚焦图像融合[J]. 北京理工大学学报, 2010, 0(S1): 136-139
作者姓名:薛广月  任雪梅
作者单位:北京理工大学 自动化学院,北京 100081;北京理工大学 自动化学院,北京 100081
基金项目:国家自然科学基金资助项目(60974046)
摘    要:提出基于非下采样Contourlet变换的支持向量机(SVM)多聚焦图像融合算法. 采用非下采样Contourlet变换分解图像得到不同频域子带系数. 针对直接取系数绝对值最大融合规则不能反映图像区域的缺点,提出SVM分类系数融合规则. 根据各子带系数物理意义将区域方差、区域能量作为SVM核函数参考量来选择清晰像素点系数,根据融合系数重构得到融合图像. 结果证明该算法能有效并准确地融合图像中的信息.

关 键 词:图像融合  非下采样Contourlet变换  支持向量机  融合规则
收稿时间:2010-03-30

Support Vector Machine Based on Nonsubsampled Contourlet Transform for Fusing Multi-Focus Images
XUE Guang-yue and REN Xue-mei. Support Vector Machine Based on Nonsubsampled Contourlet Transform for Fusing Multi-Focus Images[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2010, 0(S1): 136-139
Authors:XUE Guang-yue and REN Xue-mei
Affiliation:School of Automation, Beijing Institute of Technology, Beijing 100081, China;School of Automation, Beijing Institute of Technology, Beijing 100081, China
Abstract:The nonsubsampled Contourlet transform (NSCT) provides a shift-invariant directional multiresolution image representation, which leads to a NSCT with better frequency selectivity and regularity. A new approach is improved to fuse multi-focus images with support vector machine(SVM) based on NSCT. The features from the NSCT coefficients are used and SVMs are trained to determine whether coefficients from the source image with the best focus should be used. The kernels of SVMs are improved by using region variance and region energy. The fused NSCT coefficients are used to reconstruct fused image.Experimental results show that the proposed method fuses multi-focus images effectively and accurately.
Keywords:image fusion  nonsubsampled Contourlet transform(NSCT)  support vector machine  fusion rule
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号