首页 | 本学科首页   官方微博 | 高级检索  
     

基于压缩感知的交通监控视频目标检测算法
引用本文:李芬兰,彭卓韬,庄哲民. 基于压缩感知的交通监控视频目标检测算法[J]. 汕头大学学报(自然科学版), 2013, 0(2): 45-54
作者姓名:李芬兰  彭卓韬  庄哲民
作者单位:汕头大学工学院电子系,广东 汕头 515063
摘    要:针对公路交通监控的需求增大与网络带宽资源有限的矛盾,本文提出一种贝叶斯压缩感知的目标检测算法.该算法采用小波基对信号进行稀疏,用部分哈达玛测量矩阵进行观测,实现视频的压缩,为了得到更为准确的前景,提出在部分时间均衡自适应背景模型下,将背景分割思想和小波树结构的贝叶斯压缩感知结合的重构算法完成目标检测.通过对多个场景监控视频的试验,验证了该方法的准确性和有效性,并对光线变化具有一定的鲁棒性和减少视频传输的成本.

关 键 词:压缩感知  目标检测  贝叶斯重构  时间均衡

Object Detection Algorithm of Traffic Video Monitoring Based on Compressed Sensing
Abstract:To adapt the contradiction between the increasing demands of highway traffic network monitoring and the limited network bandwidth resources,an object detection algorithm is proposed based on Bayesian compressed sensing.Videos are sparse in a wavelet base,and the Hadamard measurement matrix is adopted to compress the videos.To get more accurate foreground,an adaptive background model of part time average mean is proposed.An object detection method is also proposed that combines background difference and Bayesian compressed sensing of wavelet tree structure.The proposed method can robustly detect the targets under changing light and reduce the price of video transmission.Through many experiments in video monitoring of multiple scenes,the results show the accuracy and effectiveness of the proposed method.
Keywords:compressed sensing  object detection  Bayesian reconstruction  time average mean
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号