首页 | 本学科首页   官方微博 | 高级检索  
     

参数优化支持向量机的人参价格预测模型
引用本文:马建华,张星奇,张辉. 参数优化支持向量机的人参价格预测模型[J]. 吉林大学学报(信息科学版), 2012, 30(2): 218-222. DOI: 10.3969/j.issn.1671-5896.2012.02.019
作者姓名:马建华  张星奇  张辉
作者单位:1.吉林铁路职业技术学院铁道工程系,吉林吉林,132002;2.吉林大学生命科学学院,长春,130012;3.吉林铁路职业技术学院电气工程系,吉林吉林,132002
摘    要:
为了对人参价格进行预测,分析了影响人参价格因素,通过K-fold交叉验证方法,利用粒子群算法对支持向量机的惩罚参数c和ggamma值进行寻优,建立起2010年1月~2011年12月林下参的价格预测模型.利用粒子群算法优化惩罚参数c为3.6974,利用radial basis function核函数的SVM(Support Vector Machine)对预测集1的预测相关系数为97.316%.

关 键 词:支持向量机  粒子群算法  人参价格  
收稿时间:2011-10-29

Ginseng Price Prediction Model Based on Support Vector Machine and Particle Swarm Optimization
MA Jian-hua , ZHANG Xing-qi , ZHANG Hui. Ginseng Price Prediction Model Based on Support Vector Machine and Particle Swarm Optimization[J]. Journal of Jilin University:Information Sci Ed, 2012, 30(2): 218-222. DOI: 10.3969/j.issn.1671-5896.2012.02.019
Authors:MA Jian-hua    ZHANG Xing-qi    ZHANG Hui
Affiliation:1a.Department of Railway Engineering;1b.Department of Electrical Engineering,Jilin |Railway Career Technical College,Jilin 132002,China;2.College of Life Science,Jilin |University|Changchun 130012,China
Abstract:
Through the analysis of the influence of ginseng price factors,we predict the ginseng price.We applied K-fold cross-validation method,utilized the PSO(Particle Swarm Optimization) to reach the optimum of penalty parameter c and value of ggamma,and built the forecast model of the ginseng price from January 2010 to December 2011.The optimized value by PSO for penalty parameter c is 3.6974,the prediction correlation coefficient for prediction set 1 by the SVM(Support Vector Machine)of radial basis kernel function is 97.316%,the results are satisfactory,and we can predict ginseng price from January to June 2012 with this model.
Keywords:support vector machine  particle swarm optimization  ginseng prices
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号