首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊竞争学习的模糊模型一体化辨识
引用本文:王宏伟,顾宏. 基于模糊竞争学习的模糊模型一体化辨识[J]. 大连理工大学学报, 2007, 47(2): 282-286
作者姓名:王宏伟  顾宏
作者单位:大连理工大学,电子与信息工程学院,辽宁,大连,116024;大连理工大学,电子与信息工程学院,辽宁,大连,116024
摘    要:提出了一种利用MGS(modified Gram-Schmidt)算法建立非线性系统模型的建模方法,并给出了基于MGS算法的模型结构和参数辨识的一体化方法,即利用MGS正交变换对通过模糊竞争学习的聚类结果进行变换,确定对模型贡献大的规则,删除对模型贡献小的规则,同时对模型中的参数进行估计,实现模糊模型结构和参数的优化.仿真结果表明,提出的方法能够对非线性系统进行模糊建模.

关 键 词:模糊建模  模糊竞争学习  模糊辨识  正交变换
文章编号:1000-8608(2007)02-0282-05
修稿时间:2006-01-102007-01-15

An integrated identification of fuzzy model based on fuzzy competitive learning
WANG Hong-wei,GU Hong. An integrated identification of fuzzy model based on fuzzy competitive learning[J]. Journal of Dalian University of Technology, 2007, 47(2): 282-286
Authors:WANG Hong-wei  GU Hong
Affiliation:School of Electr. and Inf. Eng., Dalian Univ. of Technol., Dalian 116024, China
Abstract:The modeling method is proposed to build the model of nonlinear system by the modified Gram-Schmidt method. An integrated algorithm is used to confirm the structure and the parameters of the model by means of the modified Gram-Schmidt algorithm. The fuzzy competitive learning is transformed to confirm the fuzzy rules by means of orthogonal transform. The modified Gram-Schmidt orthogonal transform is used to acquire the important rules and remove the less important rules. The parameters of fuzzy model are estimated via the proposed method. The structure identification and the parameter identification of fuzzy model are synchronously identified in the proposed algorithm. The structure and parameters of fuzzy model are optimized. With the illustration of the simulating result, the fuzzy model of non-linear system can be built by the proposed algorithm.
Keywords:fuzzy modeling   fuzzy competitive learning   fuzzy identification   orthogonal transform
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大连理工大学学报》浏览原始摘要信息
点击此处可从《大连理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号