首页 | 本学科首页   官方微博 | 高级检索  
     

一种二元紧支集非张量积小波的构造方法
引用本文:李瑛,周蕴时. 一种二元紧支集非张量积小波的构造方法[J]. 吉林大学学报(理学版), 2004, 42(1): 43-49
作者姓名:李瑛  周蕴时
作者单位:吉林大学数学研究所,长春,130012;吉林大学数学研究所,长春,130012
基金项目:国家973项目资助基金(批准号:G1998030600).
摘    要:
从Ⅰ型三角剖分上的二元可细分的B样条基出发, 给出函数属于小波空间的充要条件; 利用此条件, 构造出小波空间上的4个紧支集、 对称的不可分离的连续函数; 证明了其中有3个函数的平移形成小波空间的Riesz基. 从而得到了Ⅰ型三角剖分上的紧支集、 对称的非张量积预小波.

关 键 词:二元预小波  紧支集  非张量积
文章编号:1671-5489(2004)01-0043-07
收稿时间:2003-07-14
修稿时间:2003-07-14

Construct method of bivariate non-tensor product prewavelet with compactly support
LI Ying,ZHOU Yun-shi. Construct method of bivariate non-tensor product prewavelet with compactly support[J]. Journal of Jilin University: Sci Ed, 2004, 42(1): 43-49
Authors:LI Ying  ZHOU Yun-shi
Affiliation:Institute of Mathematics, Jilin University, Changchun 130012, China
Abstract:
From the B-spline basis in Ⅰ triangular partition, at first, we got a sufficient and necessary condition under which the function belongs to wavelet space; secondly, by means of this condition, we constructed four non-tensor product compactly supported continuous functions with symmetry; furthermore we demonstrated there are three functions whose shifts form Riesz basis. Therefore we have obtained bivariate non-tensor product prewavelet with compactly support and symmetry in Ⅰ triangular partition.
Keywords:bivariate prewavelet  compactly support  non-tensor product
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号