首页 | 本学科首页   官方微博 | 高级检索  
     

基于快速变分稀疏贝叶斯学习的频谱感知与定位
引用本文:朱翠涛,刘绪杰. 基于快速变分稀疏贝叶斯学习的频谱感知与定位[J]. 中南民族大学学报(自然科学版), 2014, 0(1): 62-66
作者姓名:朱翠涛  刘绪杰
作者单位:中南民族大学电子信息工程学院,武汉430074
基金项目:国家自然科学基金资助项目(61072075)
摘    要:针对稀疏贝叶斯压缩感知算法存在复杂度高、收敛速度慢等缺陷,提出了一种快速变分稀疏贝叶斯学习的频谱检测与定位算法.该算法在原始问题求解过程中增加了辅助变量,消除了原问题模型中未知变量之间耦合度高的问题.并依据稀疏参数的收敛情况,自适应删除不收敛稀疏参数对应的基函数,从而进一步加快了算法的收敛速度.实验结果表明:该算法在收敛速度和频谱检测精度上有显著的改善.

关 键 词:认知无线电  频谱感知  变分稀疏贝叶斯学习  压缩采样

Spectrum Sensing and Location Based on FastVariational Sparse Bayesian Learning
Zhu Cuitao,Liu Xujie. Spectrum Sensing and Location Based on FastVariational Sparse Bayesian Learning[J]. Journal of South-Central Univ for, 2014, 0(1): 62-66
Authors:Zhu Cuitao  Liu Xujie
Affiliation:(College of Electronic and Information Engineering, South-Center University For Nationalities, Wuhan 430074, China)
Abstract:Based upon the fact that sparse Bayesian compressed sensing algorithm has the defects of high complexity and slow convergence speed , a spectrum sensing and location algorithm based on fast variational sparse Bayesian learning is proposed.The algorithm adds some auxiliary variable in the process of solving original problem , which eliminates the high coupling coefficient between the unknown variables in the original model .At the meantime, the algorithm can adaptively delete the basic functions corresponding to un-convergence sparse parameters according to the converging conditions of the sparse parameters , thus leading to the effect that the velocity of convergence is further accelerated .The experimental results show that the algorithm significantly improves the accuracy and speed of sensing .
Keywords:cognitive radio   spectrum sensing   variational sparse Bayesian learning   compressive sampling
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中南民族大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中南民族大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号