一类具偏差变元微分方程解的振动性 |
| |
作者姓名: | 张炳根 |
| |
作者单位: | 山东海洋学院 青岛 |
| |
摘 要: | 引言 许多物理模型中出现二阶非线性微分方程在文献[1-4]中,人们研究了方程(1)的解的振动性与渐近性。特别,最近Marini~[1]研究解的渐近性质,其中q(t)>0,yf(y)>0当y≠0。熟知方程(2)没有振动解,但当其右部出现偏差变元时,振动解的出现是可能的。本文的定理1给出充分条件,保证方程(2)的所有有界解是振动的,当其右部有偏差变元时。下面的定理2是建立保证方程(1)的一切解振动的充分条件,此结果包括了最近Onose和燕居让的工作。
|
本文献已被 CNKI 等数据库收录! |
|