首页 | 本学科首页   官方微博 | 高级检索  
     

结合异常检测的X射线安检图像识别方法
引用本文:杨子固,李海芳,刘剑超,王飞龙,李钢. 结合异常检测的X射线安检图像识别方法[J]. 科学技术与工程, 2021, 21(26): 11240-11245
作者姓名:杨子固  李海芳  刘剑超  王飞龙  李钢
作者单位:太原理工大学信息与计算机学院,晋中030600;太原理工大学大数据学院,晋中030600;太原理工大学软件学院,晋中030600
基金项目:国家自然科学基金(基于脑影像高精度特征的人类和猕猴跨物种比较方法研究,61976150);山西省自然科学基金(基于深度深度神经网络的污损图像分割方法研究应用,201901D111091);山西省自然科学基金(基于影像特征的跨物种大脑结构可比较性研究,201801D21135)
摘    要:针对Faster R-CNN模型对X射线安检图像中危险品检测准确率低、误检率高的问题,提出了一种前置预分类头部的X射线安检图像检测网络(pre-classification Faster R-CNN,PC-Faster R-CNN)。该模型在骨干网络之后,区域建议网络(Region Proposal Networks, RPN)之前新增一个预分类模块先对X射线安检图像进行异常检测,提高模型对正常图像的识别能力;同时引入兴趣区域对齐(RoIAlign)模块,减小兴趣区域池化层(RoIPooling)引起的量化误差,进而提升Faster R-CNN的检测性能。新模型将浅层卷积层的低级边缘特征输入到预分类模块,使其学习正常图像的高级语义特征,从而改善整个模型的识别性能。实验结果表明,与原始的Faster R-CNN相比,本文模型对危险品的检测精度提升了9.03%,误检率降低了24.03%;同时预分类头部使得模型较大地提高了检测效率,比原始的Faster R-CNN提升了44.54%。

关 键 词:X射线安检图像  异常检测  目标检测  Faster R-CNN  误检
收稿时间:2021-03-18
修稿时间:2021-07-30

X-ray security image recognition methodcombined with anomaly detection
Yang Zigu,Li Haifang,Liu Jianchao,Wang Feilong,Li Gang. X-ray security image recognition methodcombined with anomaly detection[J]. Science Technology and Engineering, 2021, 21(26): 11240-11245
Authors:Yang Zigu  Li Haifang  Liu Jianchao  Wang Feilong  Li Gang
Affiliation:College of Information and Computer,Taiyuan University Of Technology,Jinzhong Shanxi;College of Data Science,Taiyuan University Of Technology,Jinzhong Shanxi
Abstract:Aiming at the problem of Faster R-CNN''s low detection accuracy and high false positive rate of dangerous goods in X-ray security images, a kind of X-ray security image detection network with a pre-classification head (Pre-classification Faster R- CNN, PC-Faster R-CNN) was proposed in this paper. A new pre-classification module that shares the backbone for anomaly detection was added to improve the model''s ability to recognize normal images. RoIAlign is also introduced to reduce the quantization error caused by RoIPooling, which in turn improves the detection performance of Faster R-CNN. The features from low-level convolutional layer were fed to the pre-classification module, allowing it to learn high-level semantic features of normal images and improve the recognition performance. The results show that compared with the original Faster R-CNN, the mean average precision is improved by 9.03%, the false positive rate is reduced by 24.03%. With the pre-classification module, the detection efficiency was also improved by 44.54% over the original Faster R-CNN.
Keywords:X-ray security image   anomaly detection   object detection   Faster R-CNN   false positive
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号