首页 | 本学科首页   官方微博 | 高级检索  
     

动态社会网络中的社区挖掘算法研究
引用本文:才华,周春光,王喆,徐秀娟,于卓尔,刘爽. 动态社会网络中的社区挖掘算法研究[J]. 吉林大学学报(信息科学版), 2008, 26(4)
作者姓名:才华  周春光  王喆  徐秀娟  于卓尔  刘爽
作者单位:吉林大学,计算机科学与技术学院,长春,130012;吉林大学,计算机科学与技术学院,长春,130012;吉林大学,计算机科学与技术学院,长春,130012;吉林大学,计算机科学与技术学院,长春,130012;吉林大学,计算机科学与技术学院,长春,130012;吉林大学,计算机科学与技术学院,长春,130012
基金项目:国家自然科学基金重点资助项目 , 国家863计划基金资助项目
摘    要:
为解决社区挖掘问题,针对社会网络的动态特性,给出了新的社区定义,并结合连通性和频繁性概念提出一种新的算法DCSMA(Dynamic Community Structure Mining Algorithm)。挖掘时刻连通的个体集合作为社区,采用层状结构模型,根据重要性权重区分社区内个体,使社区结构更加清晰。在标准测试数据集上的实验结果表明了该算法的可行性和有效性。

关 键 词:社会网络  社区挖掘  连通性  层状结构模型

Algorithm Research on Community Mining from Dynamic Social Networks
CAI Hua,ZHOU Chun-guang,WANG Zhe,XU Xiu-juan,YU Zhuo-er,LIU Shuang. Algorithm Research on Community Mining from Dynamic Social Networks[J]. Journal of Jilin University:Information Sci Ed, 2008, 26(4)
Authors:CAI Hua  ZHOU Chun-guang  WANG Zhe  XU Xiu-juan  YU Zhuo-er  LIU Shuang
Abstract:
Community mining is one of the hot research fields in social network analysis.In view of the dynamic character of social network,proposes a novel definition of community,and based on the concept of connectivity and frequency,it introduces a novel algorithm DCSMA(Dynamic Community Structure Mining Algorithm).It can successfully find the set of individuals which retain connectivity at any successive moment.In addition,we adopt the samdwich model,and distinguish the individuals according to their importance in order to make the structural framework of community more clear and better understood.Experiments on standard test data show that the algorithm is feasible and effective.
Keywords:social network  community mining  connectivity  samdwich model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号