首页 | 本学科首页   官方微博 | 高级检索  
     

二维Laplace方程Dirichlet问题直接边界积分方程的Galerkin解法
引用本文:董海云 祝家麟 张守贵. 二维Laplace方程Dirichlet问题直接边界积分方程的Galerkin解法[J]. 重庆大学学报(自然科学版), 2006, 29(4): 122-125
作者姓名:董海云 祝家麟 张守贵
作者单位:重庆大学,数理学院,重庆,400030;重庆大学,数理学院,重庆,400030;重庆大学,数理学院,重庆,400030
摘    要:用Green公式和基本解推导得出的直接边界积分方程来求解二维Laplace方程的Dirichlet问题.对直接边界积分方程大都采用配点法求解,还未见有实际用Galerkin边界元来解的报道.对Laplace方程的直接边界积分方程进行变分后,利用Galerkin方法,同时采用线性单元变分对方程进行了求解.该方法需要在边界上计算重积分,推出了第一重积分的解析计算公式,对无奇异性的外层积分则采用高斯数值积分.数值实验表明该方法是可行有效的.

关 键 词:Laplace方程  直接边界积分方程  Galerkin边界元法  线性元
文章编号:1000-582X(2006)04-0122-04
收稿时间:2005-12-11
修稿时间:2005-12-11

Galerkin Boundary Element Method for Direct Boundary Integral Eqution for Dirichlet Problem of 2-D Laplace Eqation
DONG Hai-yun,ZHU Jia-lin,ZHANG Shou-gui. Galerkin Boundary Element Method for Direct Boundary Integral Eqution for Dirichlet Problem of 2-D Laplace Eqation[J]. Journal of Chongqing University(Natural Science Edition), 2006, 29(4): 122-125
Authors:DONG Hai-yun  ZHU Jia-lin  ZHANG Shou-gui
Affiliation:College of Mathematics and Physics, Chongqing University, Chongqing 400030, China
Abstract:The direct boundary integral equation of two-dimensional Laplace equation for Dirichlet problem is(con-sidered).It is deduced by Green's formula and the fundamental solution.The most-used numerical method for solving(direct) boundary integral equation is collocation method,and seldom have been used the Galerkin scheme in this case.The direct boundary integral eqution is changed into the variational eqution.Using linear element,it is solved by Galerkin boundary method.In the variational eqution double integrations shall be carried out.The paper presents the analytical formula to calculate the inner integration and the Gaussian quadrature is used for the outer integration. The numerical experimentation proved thefaesibility and the efficiency.
Keywords:Laplace equation   direct boundary integral equation   Galerkin method    linear element
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号