首页 | 本学科首页   官方微博 | 高级检索  
     

WEKA环境下基于模糊理论的聚类算法
引用本文:郑世明,苗壮,宋自林,高志年. WEKA环境下基于模糊理论的聚类算法[J]. 解放军理工大学学报(自然科学版), 2012, 0(1): 22-26. DOI: -
作者姓名:郑世明  苗壮  宋自林  高志年
作者单位:1.解放军理工大学 指挥自动化学院, 江苏 南京 210007; 2.南京陆军指挥学院, 江苏 南京 210089
基金项目:国家863计划资助项目(2007AA01Z126).
摘    要:因特网上的数据规模大、动态性强,通常发现的知识或规则很可能是不精确和不完备的。为了克服以上不足,引入模糊理论,通过寻找模糊相似上近似集进行合理聚类,在确定聚类数目的过程中,利用平均信息熵进行最佳聚类。同时将模糊聚类算法嵌入WEKA平台,利用WEKA中的类和可视化功能,扩充了WEKA中的聚类算法。实验表明,算法对含有噪声的、分布不规则的大数据集具有很高的精度和收敛速度。

关 键 词:模糊集  数据挖掘  模糊聚类  相似上近似  WEKA  聚类算法
收稿时间:2010-03-18
修稿时间:2010-03-18.

Clustering algorithm based on fuzzy theory in WEKA
ZHENG Shi-ming,MIAO Zhuang,SONG Zi-lin and GAO Zhi-nian. Clustering algorithm based on fuzzy theory in WEKA[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2012, 0(1): 22-26. DOI: -
Authors:ZHENG Shi-ming  MIAO Zhuang  SONG Zi-lin  GAO Zhi-nian
Affiliation:1.Institute of Command Automation , PLA Univ. of Sci. & Tech., Nanjing 210007, China;2.Nanjing Army Command College, Nanjing 210089,China
Abstract:The data in Internet has a large scale and dynamic peculiarity and the discovered knowledge or rules are likely to be imprecise or incomplete generally. Fuzzy theory and information entropy were introduced into the clustering analysis to overcome the difficulties and achieve the best results of clustering by looking for Fuzzy similarity upper approximation. The process of embedding the Fuzzy approximation algorithm into the WEKA platform in which the classes and visualization functions of open source WEKA was fully utilized. The Fuzzy approximation algorithms extended the clustering algorithm in WEKA. The experiment proves that it has a higher accuracy and convergence for the large scale data sets that are anomalous and noise.
Keywords:fuzzy sets  data mining  fuzzy clustering  similarity upper approximation  WEKA  clustering algorithm
点击此处可从《解放军理工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《解放军理工大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号