摘 要: | 为提高神经网络预测控制的性能,提出了基于自适应扩展粒子群优化的神经网络预测控制方案。基本PSO算法中,每个粒子的更新受粒子个体极值和局部极值的影响,为了提高其全局收敛性,采用多粒子策略,使每个粒子的更新受更多其他粒子的影响;为提高收敛速度,采用自适应策略,对参数c0进行自适应调整,使c0随着迭代次数的增加而逐渐减小,这样,在PSO算法的搜索过程中,随着迭代次数的增加,搜索区域会越来越小,从而加快PSO算法收敛速度。运用该算法实现神经网络预测控制中的滚动优化,在有限时域内对控制序列进行寻列,给出基于粒子群优化的神经网络预测控制系统的稳定性证明。仿真结果表明,基于粒子群优化的神经网络预测控制系统具有良好的跟踪性能。
|