首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法优化的神经网络电子邮件信息分类器的研究
引用本文:袁家斌,浦海晨. 基于遗传算法优化的神经网络电子邮件信息分类器的研究[J]. 南京理工大学学报(自然科学版), 2008, 32(1): 78-82
作者姓名:袁家斌  浦海晨
作者单位:南京航空航天大学信息科学与技术学院,江苏,南京,210016
基金项目:国家高技术研究发展计划(863计划)
摘    要:结合反垃圾邮件技术的研究,分析了电子邮件数字信息预处理中的特征选择法和将机器学习技术应用于数字信息分类器的方法.针对邮件信息特征向量庞大的问题,提出了GA-CHI特征选择法作为信息预处理,将复杂的邮件数字信息转变成易于机器学习处理的形式.基于BP神经网络电子邮件数字信息分类器,采用遗传算法来优化神经网络邮件数字信息分类器,以进一步提高对中文电子邮件的分类效果.通过对系统的实验分析表明:该文采用的方法能有效地实现对电子邮件数字信息的分类.

关 键 词:电子邮件分类器  特征选择  遗传算法  人工神经网络
文章编号:1005-9830(2008)01-0078-05
收稿时间:2007-06-12
修稿时间:2007-12-20

E-mail Information Classifier of Neural Network Based on Genetic Algorithm Optimization
YUAN Jia-bin,PU Hai-chen. E-mail Information Classifier of Neural Network Based on Genetic Algorithm Optimization[J]. Journal of Nanjing University of Science and Technology(Nature Science), 2008, 32(1): 78-82
Authors:YUAN Jia-bin  PU Hai-chen
Abstract:Combined with the research on Anti-Spam technology, the feature selection algorithm in pretreatment of e-mail information and the method of applying machine learning technology to digital information classifier is analyzed. In view of the problem that mail message eigenvector is so huge, GACHI feature selection algorithm as pretreatment of information is proposed. It transforms complicated e-mail information into the form which can be easily managed by machine learning. In order to further enhance the effectiveness of Chinese e-mail classification, e-mail information classifier based on BP neural network adopts genetic algorithm to optimize itself. Experimental analysis of the system shows that the method described in the paper can effectively realize the classification of the e-mail information.
Keywords:e-mail information classifiers   feature selection   genetic algorithms   artificial neural net-work
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号