首页 | 本学科首页   官方微博 | 高级检索  
     

滑动平均模型参数估计的Gevers-Wouters算法的指数收敛性
引用本文:邓自立. 滑动平均模型参数估计的Gevers-Wouters算法的指数收敛性[J]. 科学技术与工程, 2005, 5(20): 1473-14781484
作者姓名:邓自立
作者单位:黑龙江大学自动化系,哈尔滨,150080
基金项目:国家自然科学基金(60374026)及黑龙江大学自动控制重点实验室基金资助
摘    要:可逆的向量滑动平均(MA)模型参数估计问题本质上是一个矩阵谱分解问题。基于向量MA模型和状态空间模型之间的变换,用Kalman滤波方法证明了矩阵谱分解的Gevers-Wouters算法的一致性和指数收敛性,且证明了收敛速度由MA多项式矩阵的行列式的零点决定。当这些零点不接近单位圆周时,Gevers-Wouters算法可高精度、快速地给出MA参数估计,因而提供一种快速有效的谱分解工具。

关 键 词:向量滑动平均模型  参数估计  矩阵谱分解快速迭代算法  一致性  指数收敛性  收敛速度  Kalman滤波方法
文章编号:1671-1815(2005)20-1473-07
收稿时间:2005-07-05
修稿时间:2005-07-05

Exponential Convergence of Gevers-Wouters Algorithm for Moving Average Model Parameter Estimation
DENG Zili. Exponential Convergence of Gevers-Wouters Algorithm for Moving Average Model Parameter Estimation[J]. Science Technology and Engineering, 2005, 5(20): 1473-14781484
Authors:DENG Zili
Affiliation:Department of Automation, Heilongjiang University, Harbin 150080
Abstract:The parameter estimation problem to the invertible vector moving average (MA) model essentially is a matrix spectral factorization problem. By the Kalman filtering method, based on the transformation between the vector MA model and the state space model, the consistence and exponential convergence of the Gevers-Wouters algorithm for matrix spectral factorization is proved, and it is proved that the convergence rate is determined by the zeros of the determinant of the MA polynomial matrix. When these zeros points are not approximate to the unit circle, the Gevers-Wouters algorithm can quickly give the vector MA parameter estimates with the higher accuracy, and provides a fast and efficient spectral factorization tool.
Keywords:vector moving average model parameter estimation matrix spectral factorization fast iterative algorithm consistence exponential convergence convergence rate Kalman filtering method
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号