首页 | 本学科首页   官方微博 | 高级检索  
     

具变指数的拟线性方程解的最大模估计
引用本文:孟繁慧. 具变指数的拟线性方程解的最大模估计[J]. 吉林大学学报(理学版), 2015, 53(5): 947-949
作者姓名:孟繁慧
作者单位:1. 吉林省金融文化研究中心, 长春 130028; 2. 长春金融高等专科学校, 长春 130028
摘    要:考虑p(x)-Laplace方程Dirichlet边值问题的L∞估计,通过改进的迭代引理和De Giorgi迭代,给出了非负不增函数Ak∶=meas{x∈Ω:uk}的估计,并应用迭代引理得到了解的L∞正则性.结果表明:利用这种改进的De Giorgi迭代,在得到解的L∞估计时,也可得到该解对各种指标精确的依赖关系;这种正则性技术可应用到带有退化和奇异低阶项的偏微分方程中.

关 键 词:最大模  变指数  p(x)-Laplace方程  迭代  
收稿时间:2015-03-23

Maximum Modulus Estimation to the Solution of Quasi-linear Equations with Variable Exponents
MENG Fanhui. Maximum Modulus Estimation to the Solution of Quasi-linear Equations with Variable Exponents[J]. Journal of Jilin University: Sci Ed, 2015, 53(5): 947-949
Authors:MENG Fanhui
Affiliation:1. Jilin Province Financial Culture Research Center, Changchun 130028, China;2. Changchun Finance College, Changchun 130028, China
Abstract:This paper is devoted to the maximum modulus estimation to the solution of a p(x)-Laplace equation with Dirichlet boundary condition. With the help
of the modified iterative lemma, the author estimated the nonnegative non|increasing function |Ak|∶=meas{x∈Ω: |u|>k}. As a result, the author obtained the L regularity by means of De Giorgi iteration technique. Using this technique one can obtain the accurate dependency of the solution onthe index. On the other hand, this modified technique can be applied to some partial differential equations with degeneracy and singular lower order terms.
Keywords:maximum modulus  variable exponents  p(x)-Laplace equation  iteration  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号