摘 要: | 为提高多物体抓取检测网络的抓取检测准确率,提出一种基于改进Cascade R-CNN模型的机械臂抓取检测算法.首先,引入ResNeXt结构能够在不加大网络设计难度的前提下提高了模型的准确率;引入带空洞卷积的空间金字塔池化模块以解决分辨率较低的问题;接着对抓取框回归分支和角度分类分支以分治方法进行优化.其次,针对多物体抓取数据集缺乏的问题,构建多目标抓取数据集(multi-object grasping dataset, MOGD),有效地扩充了多物体抓取检测数据集.最后,基于改进Cascade R-CNN模型设计抓取检测网络,实验结果表明,改进后的算法效率更高,PI-Cascade R-CNN实验准确率为93%,较Cascade R-CNN提升1.5个百分点.
|