首页 | 本学科首页   官方微博 | 高级检索  
     

独立分量分析及其在ERP提取中的应用
引用本文:伟利国,李学恩,梁淼. 独立分量分析及其在ERP提取中的应用[J]. 北京理工大学学报, 2004, 24(1): 77-81
作者姓名:伟利国  李学恩  梁淼
作者单位:北京理工大学,信息科学技术学院电子工程系,北京,100081;中国科学院,自动化研究所,北京,100080
摘    要:
利用ICA可将混合在观测信号中的相互独立的源信号分离出来的特性,针对脑电信号及其事件相关电位(ERP)的特点,提出一种基于ICA的ERP快速提取算法,并应用于仿真数据分离和实际脑电信号ERP提取.实验结果表明,该算法具有较强的稳健性和实用性.

关 键 词:独立分量分析  脑电图  事件相关电位
文章编号:1001-0645(2004)01-0077-05
收稿时间:2003-04-07
修稿时间:2003-04-07

Independent Component Analysis and Its Application in the Estimation of Event Related Potentials (ERP)
WEI Li-guo,LI Xue-en and LIANG Miao. Independent Component Analysis and Its Application in the Estimation of Event Related Potentials (ERP)[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2004, 24(1): 77-81
Authors:WEI Li-guo  LI Xue-en  LIANG Miao
Affiliation:WEI Li-guo~1,LI Xue-en~2,LIANG Miao~1
Abstract:
Independent component analysis (ICA) is a novel blind source separating method, which can extract individual signals from mixtures of signals. According to the peculiarities of electroencephalogram (EEG) and event related potentials (ERP), a fast algorithm based on separating characters of ICA is used to extract the useful information of ERP from EEG. A brief illustration of the basic principles and common criteria of ICA is first given, together with explanations of the ICA algorithm. ICA is then applied in the separation of simulated data set and extracting ERP from EEG. Satisfactory results obtained in both aspects illustrate the performance and validity of the algorithm.
Keywords:independent component analysis  electroencephalogram  event related potentials
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号