首页 | 本学科首页   官方微博 | 高级检索  
     

一类半线性椭圆方程的二重网格差分算法
引用本文:刘伟,芮洪兴. 一类半线性椭圆方程的二重网格差分算法[J]. 山东大学学报(理学版), 2008, 43(4): 51-54
作者姓名:刘伟  芮洪兴
作者单位:鲁东大学数学与信息学院,山东,烟台,264025;山东大学数学与系统科学学院,山东,济南,250100
基金项目:国家自然科学基金 , 高等学校博士学科点专项科研项目
摘    要:应用二重网格差分算法处理了一类半线性椭圆问题。无需求细网格上的非线性解,对粗网格(可以很粗)上的数值解在细网格上进行几次线性修正即可,且重复算法的最后一步可以按粗网格步长任意阶地逼近细网格上的非线性解。算法提高了计算效率但不降低精度,有数值算例加以验证。

关 键 词:有限差分法  半线性方程  二重网格法
文章编号:1671-9352(2008)04-0051-04
修稿时间:2007-11-05

A two-grid algorithm for a finite difference solution of semi-linear elliptic equations
LIU Wei,RUI Hong-xing. A two-grid algorithm for a finite difference solution of semi-linear elliptic equations[J]. Journal of Shandong University, 2008, 43(4): 51-54
Authors:LIU Wei  RUI Hong-xing
Affiliation:1. School of Mathematics andInformation, Ludong University, Yantai 264025, Shandong, China;2. School of Mathematics and System Sciences, Shandong University, Jinan 250100, Shandong, China
Abstract:An efficient two-grid algorithm was presented for the approximation of semi-linear elliptic equations using the finite difference method. The solution of a nonlinear system in fine space was reduced to the solution of one small system in coarse space and two linear systems on the fine space. A remarkable fact is that any order accuracy of approximation in coarse grid size can be obtained if other iterations are performed similarly to last step of the algorithm. The numerical results confirm that the algorithm obtains a decrease in the amount of computing time without sacrificing the order of accuracy of the fine grid solution.
Keywords:finite difference method  semilinear equations  two-grid method
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号