首页 | 本学科首页   官方微博 | 高级检索  
     

有理三次Bezier样条的曲线修正方法
引用本文:谢伟松,熊燕. 有理三次Bezier样条的曲线修正方法[J]. 应用科学学报, 2007, 25(2): 218-220
作者姓名:谢伟松  熊燕
作者单位:天津大学,理学院,天津,300072
基金项目:天津大学-南开大学刘徽应用数学研究中心资助项目
摘    要:
提出了一种新的用于曲线修正的方法:对于初始的G2分段有理三次Bezier样条曲线,首先根据需要给出约束边界,对于与约束边界相交的曲线段,将被其所在的曲线族中的一条与约束边界相切或过约束边界顶点的曲线所取代,最后依据曲率恢复其G2连续性.修正后的曲线不穿过约束边界,且继续保持原有的几何连续性.数值实验表明,该方法简单、快速、有效.

关 键 词:曲线修正  约束插值  有理三次Bezier样条
文章编号:0255-8297(2007)02-0218-03
修稿时间:2006-03-162006-05-29

Modification of Curves with Rational Cubic Bezier Splines
XIE Wei-song,XIONG Yan. Modification of Curves with Rational Cubic Bezier Splines[J]. Journal of Applied Sciences, 2007, 25(2): 218-220
Authors:XIE Wei-song  XIONG Yan
Affiliation:School of Science, Tianjin University, Tianjin 300072, China
Abstract:
A new method for modification of curves is described in this paper.To modify an initial G~2 rational cubic Bezier curve,we give constrained boundaries,replace the curve segment intersecting the boundaries with one of its curve family,which is either tangent to the boundaries or passes their vertexes,and restore G~2 continuity according to the curvature.The modified curve does not intersect the boundaries and keeps geometric continuity.Numerical examples are given,showing that the method is simple,fast and efficient.
Keywords:modification of curves  constrained interpolation  rational cubic Bezier splines
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号