首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的开关磁阻电动机非线性建模
引用本文:蔡燕 许镇琳 高超. 基于BP神经网络的开关磁阻电动机非线性建模[J]. 天津大学学报(自然科学与工程技术版), 2005, 38(10): 869-873
作者姓名:蔡燕 许镇琳 高超
作者单位:[1]天津大学电气与自动化工程学院,天津300072 [2]天津工业大学计算机技术与自动化学院,天津300160 [3]中纺机电研究所,北京100025
基金项目:国家高技术研究发展计划“863”课题(2005AA501430).
摘    要:为提高开关磁阻电动机(SRM)调速系统性能,在测取准确磁特性样本数据基础上,利用神经网络所具有的非线性映射能力,基于Levenberg-Marquardt算法的BP神经网络建立了SRM的非线性模型。该模型训练收敛快,泛化能力强,且网络规模小,便于实时控制,经与样机实测数据比较,验证了该模型的准确性,将所建模型与准线性模型对比,显示出神经网络模型优越。

关 键 词:开关磁阻电动机 非线性模型 BP神经网络 Levenberg-Marquardt算法
文章编号:0493-2137(2005)10-0869-05
收稿时间:2004-05-24
修稿时间:2004-05-242004-09-08

Building of a Nonlinear Model of Switched Reluctance Motor by BP Neural Networks
CAI Yan, XU Zhen-lin, GAO Chao. Building of a Nonlinear Model of Switched Reluctance Motor by BP Neural Networks[J]. Journal of Tianjin University(Science and Technology), 2005, 38(10): 869-873
Authors:CAI Yan   XU Zhen-lin   GAO Chao
Affiliation:1. School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072, China ; 2. School of Computer and Automation, Tianjin Polytechnic University, Tianjin 300160, China; 3. China Textile Electrical and Mechanical Engineering Research Institute, Beijing 100025, China
Abstract:An accurate flux-linkage model of switched reluctance motor ( SRM ) is the key to improving performance of switched reluctance driving system. After measuring the accurate flux-linkage data, the nonlinear model of SRM was developed, which made use of nonlinear mapping ability of BP neural network based on Levenberg-Marquardt arithmetic. This network model is of fast training convergence, generalization and small network scale handy for real-time control. Accu(?)acy of this model was proved by experimental results. Compared with quasi-linear model, the nonlinear mode(?) performs better.
Keywords:switched reluctance motor   nonlinear model   back propagation neural networks   Levenberg-Marquardt arithmetic
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号