首页 | 本学科首页   官方微博 | 高级检索  
     

基于多头注意力的双向LSTM情感分析模型研究
作者姓名:林原  李家平  许侃  杨亮  林鸿飞
作者单位:大连理工大学计算机科学与技术学院
摘    要:文本情感分析是自然语言处理领域中的重要任务,是指通过提取文本特征对基于文本的情感倾向进行分类。为了有效地提高文本情感分析准确率,提出一种新的基于多头注意力的双向长短期记忆(long short-term memory,LSTM)文本情感分析模型(Multi-Head Attention-based Bi-LSTM Model,MHA-B)。模型先利用双向LSTM进行初步特征提取,再结合多头注意力机制从不同的维度和表示子空间里提取相关的信息。在Large Movie Review Dataset与Semeval-2017-task4-A English两个数据集的实验结果表明:MHA-B模型的情感分析准确率与现有多种模型相比都有所提高。

关 键 词:情感分析  深度学习  注意力机制
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号