摘 要: | 周知,在一般有界域上至今尚未建立具有全纯核的多复变数整体积分公式.本文的目的是要在一般有界域上建立一类具有离散全纯核的Bochner-Martinelli整体积分公式,并能在(?)方程和奇异积分方程等研究中得到重要的应用.设D是C~n中具有C~1光滑边界(?)D的有界域,(?)={B_n|n∈N}是D的一个σ局部有限开覆盖,B_j ∈(?),J是N的有限子集}是(?)的一个σ局部有限加细,记为(?).(?)表示C~n中的欧氏拓扑,(?)表示(?)在D中的相对拓扑.1 构造单位分解和离散核定义1.1 设Ψ是拓补空间(C~n,(?))的子空间(D,(?))中一可数可积函数族,若对每一点z∈D,存在z的邻域U,使得除了Ψ的有限个成员之外在点z或U上均为零,而这有限个成员在U中是全纯的,则称Ψ是D上的一个σ点有限局部全纯的函数族.定义1.2 设(?)是域D的一个开覆盖,Ψ={f_n:n∈N}是D上的一个σ点有限局部全纯的函数族,若对每一点z∈D,满足,并且对每一f_n∈Ψ,存在一个U∈(?)使得{z∈D|f_n(z)≠0}=U,则称Ψ是D上的一个从属于(?)的σ点有限局部全纯的单位分解我们容易验证下面的引理.
|