首页 | 本学科首页   官方微博 | 高级检索  
     

具有离散核的Bochner-Martinelli公式
作者姓名:林良裕
作者单位:厦门大学数学研究所 厦门361005
摘    要:周知,在一般有界域上至今尚未建立具有全纯核的多复变数整体积分公式.本文的目的是要在一般有界域上建立一类具有离散全纯核的Bochner-Martinelli整体积分公式,并能在(?)方程和奇异积分方程等研究中得到重要的应用.设D是C~n中具有C~1光滑边界(?)D的有界域,(?)={B_n|n∈N}是D的一个σ局部有限开覆盖,B_j ∈(?),J是N的有限子集}是(?)的一个σ局部有限加细,记为(?).(?)表示C~n中的欧氏拓扑,(?)表示(?)在D中的相对拓扑.1 构造单位分解和离散核定义1.1 设Ψ是拓补空间(C~n,(?))的子空间(D,(?))中一可数可积函数族,若对每一点z∈D,存在z的邻域U,使得除了Ψ的有限个成员之外在点z或U上均为零,而这有限个成员在U中是全纯的,则称Ψ是D上的一个σ点有限局部全纯的函数族.定义1.2 设(?)是域D的一个开覆盖,Ψ={f_n:n∈N}是D上的一个σ点有限局部全纯的函数族,若对每一点z∈D,满足,并且对每一f_n∈Ψ,存在一个U∈(?)使得{z∈D|f_n(z)≠0}=U,则称Ψ是D上的一个从属于(?)的σ点有限局部全纯的单位分解我们容易验证下面的引理.

关 键 词:整体积分公式 离散核 B-M公式 多复变数
收稿时间:1996-01-03
修稿时间:1996-05-07
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《科学通报》浏览原始摘要信息
点击此处可从《科学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号