首页 | 本学科首页   官方微博 | 高级检索  
     

基于知识蒸馏的轻量化农作物病害识别算法
基金项目:临港新片区高新产业和科技创新专项项目 (SH-LG-GK-2020-02-11); 类脑智能科技有限公司和上海类脑芯片与片上智能系统研发与转化功能型平台项目 (17DZ2260900)
摘    要:
农作物病害是威胁农作物生长的主要因素之一, 机器学习算法能高效率实现大范围农作物病害的发现, 有利于对其进行及时处理, 进而提升农作物的产量和质量. 在大范围农业场景中, 由于供电等条件限制, 无法满足服务器等高算力设备的供电需求, 现有深度网络模型大多需要较高算力, 难以部署在低功耗的嵌入式设备上, 给大范围农作物病害的准确识别应用带来障碍. 为解决此问题, 提出了一种基于知识蒸馏的轻量化农作物病害识别模型, 并设计了一种基于残差结构和注意力机制的学生模型, 利用知识蒸馏方法从大规模模型ConvNeXt中迁移学习成果, 在实现模型轻量化的同时保持高精度识别. 实验结果表明, 在模型规模为2.
28 MB的条件下, 39类农作物病害图像分类任务的准确率达到了98.72%, 且每类病害的精确率、召回率和特异度均高于90%. 该模型满足了在嵌入式设备中部署的需求, 为农作物病害识别提供了一种实用高效的解决方法.


收稿时间:2023-12-26
点击此处可从《华东师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华东师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号