首页 | 本学科首页   官方微博 | 高级检索  
     

基于在线学习误差反传算法的仿真伺服系统设计
引用本文:段海滨,王道波,于秀芬,朱家强. 基于在线学习误差反传算法的仿真伺服系统设计[J]. 中南大学学报(自然科学版), 2005, 36(2): 267-271
作者姓名:段海滨  王道波  于秀芬  朱家强
作者单位:1. 南京航空航天大学,自动化学院,江苏,南京,210016;北京航空航天大学,自动化科学与电气工程学院,北京,100083
2. 南京航空航天大学,自动化学院,江苏,南京,210016
3. 中国科学院,空间科学与应用研究中心,北京,100080
基金项目:国家航空基础科学基金,江苏省333新世纪科学技术带头人培养工程
摘    要:针对无人机(UAV)仿真伺服系统的驱动模型,提出了一种将误差反传算法用于UAV仿真伺服系统在线学习设计的新方案.在该算法中采用了BP神经网络的基本思想,设计了两输入、单隐层、两输出在线学习策略,输入层分别为给定指令信号和反馈数字解算后的位置信号;隐含层单元数为12个;输出层设为2个输出单元,即经在线学习误差反传算法学习训练后的数字位置和速度,其中位置控制器采用自调节比例-积分-微分(PID)控制,速度通过数字/模拟(D/A)转换后传送到速度控制器,设定精度误差指标为0.05,训练样本数为30.用研制的UAV仿真伺服系统对UAV光纤陀螺传感器进行含实物半物理实时仿真实验,结果表明,该在线学习误差反传算法控制方案的UAV仿真伺服系统具有收敛性好、动态响应快、鲁棒性强的特点.

关 键 词:误差反传算法  BP神经网络  仿真伺服系统  在线学习  无人机
文章编号:1672-7207(2005)02-0267-05
修稿时间:2004-06-18

Design of On-line Learning Based Error Back Propagation Algorithm in Simulation Servo System
DUAN Hai-bin,WANG Dao-bo,YU Xiu-fen,ZHU Jia-qiang. Design of On-line Learning Based Error Back Propagation Algorithm in Simulation Servo System[J]. Journal of Central South University:Science and Technology, 2005, 36(2): 267-271
Authors:DUAN Hai-bin  WANG Dao-bo  YU Xiu-fen  ZHU Jia-qiang
Abstract:Based on the driving model of unmanned aerial vehicle(UAV) simulation servo system, a novel scheme based on on-line learning error back propagation algorithm(EBPA) was proposed in designing UAV simulation servo system. The idea of back propagation(BP) neural network was adopted in the proposed algorithm. The on-line learning strategy of EBPA with two inputs, single hidden layer and two outputs was applied in this scheme. The input layer included given signal and feedback digital position; the hidden layer had 12 nerve cells; the output layer had two output nerve cells, which were trained digital position and velocity, and self-tuning proportional-integral-differential (PID) control scheme was adopted in the position controller; the digital/analog (D/A) transformed velocity signal was transmitted to velocity controller. The resolution error was 0.05, and the number of training samples was 30. Finally, Hardware-in-loop real-timesimulation experiments for a type of fiber optic gyro were conducted in the newly designed UAV simulation servo system. Simulation results illustrate that the UAV simulation servo system using on-line learning based EBPA has good astringency, quick response and strong robust.
Keywords:error back propagation algorithm  back propagation neural network  simulation servo system  on-line learning  unmanned aerial vehicle
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号