首页 | 本学科首页   官方微博 | 高级检索  
     

基于LM-BP神经网络模式的酸性染料分类方法
引用本文:开小明,沈玉华,谢安建,郑学根. 基于LM-BP神经网络模式的酸性染料分类方法[J]. 河南科技大学学报(自然科学版), 2004, 25(3): 39-43
作者姓名:开小明  沈玉华  谢安建  郑学根
作者单位:安庆师范学院,化学系,安徽,安庆,246011;安徽大学,化学化工学院,安徽,合肥,230039;安庆石油化工研究院,安徽,安庆,246002
基金项目:国家自然科学基金资助项目(20031010),安徽省教育厅科研基金资助项目(2001kj163)
摘    要:提出用Levenberg-Marquardt Backpropagation Neural Network(LM-BP)网络对酸性偶氮染料进行分类,网络结构为4-6-5。优化了隐含层神经元数和网络训练次数,表明隐含层神经元数应比输出层神经元数多一个。考察了训练集样本的选择对结果的影响,测试集的样本参数大小要处于训练集样本之间。本网络把其中22种染料作为训练集,把另外18种染料作为测试集,与采用GCEDM逐次分类法比较,测试集识别率为83%。

关 键 词:神经网络  酸性染料  分子连通性指数
文章编号:1672-6871(2004)03-0039-05
修稿时间:2004-02-04

Classification Method of Acidic Dyes with the Pattern of Levenberg-Marquardt Backpropagation Neural Network
KAI Xiao-Ming,SHEN Yu-Hua,XIE An-Jian,ZHENG Xue-Gen. Classification Method of Acidic Dyes with the Pattern of Levenberg-Marquardt Backpropagation Neural Network[J]. Journal of Henan University of Science & Technology:Natural Science, 2004, 25(3): 39-43
Authors:KAI Xiao-Ming  SHEN Yu-Hua  XIE An-Jian  ZHENG Xue-Gen
Affiliation:KAI Xiao-Ming~1,SHEN Yu-Hua~2,XIE An-Jian~2,ZHENG Xue-Gen~3
Abstract:The acidic dyes were classified by using Levenberg-Marquardt backpropagation neural network. The best structure of network is 4-6-5.The learning times of training group and number of neurons in layer were optimized. It is showed that the number of neurons in layer is more one than the elements of output vector. Chosen training group to the influence of the results has been studied, the size of parameters of testing group must be among the parameters of training group.Among all the dyes,22 kinds of dyes are taken as training group,and other 18 kinds of dyes are taken as testing group.Compared with GCEDM,the recognition ratio of testing groups is 83%.
Keywords:Neural networks  Acidic dyes  Molecular connection index
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号