首页 | 本学科首页   官方微博 | 高级检索  
     


Blue TiO2 polymorph: An efficient material for dye-sensitized solar cellsfabricated using a low-temperature sintering process
Authors:Huy Hao Nguyen  Gobinda Gyawali  Tae Ho Kim  Sami Bin Humam
Affiliation:1. Department of Environmental and Bio-chemical Engineering, Sun Moon University, Asan, Republic of Korea;2. Division of Basic Engineering, Sun Moon University, Asan, Republic of Korea;3. Division of Mechanics and ICT Convergence Engineering, Sun Moon University, Asan, Republic of Korea
Abstract:
Recently, surface-disordered or non-stoichiometric TiO2, such as blue TiO2 (B-TiO2), has received much attention owing to its unique properties, such as structural disorder near the surface and the existence of Ti3+ ions and oxygen vacancies. Therefore, surface-disordered TiO2 has been applied for microwave absorption, photocatalysis, in photoelectrochemical sensors and rechargeable lithium-ion batteries. In this work B-TiO2, a polymorph consisting of nanoparticles, nanotubes and nanosheets, was successfully synthesized and employed as a semiconductor layer in dye-sensitized solar cells (DSSCs) fabricated using a low-temperature heat treatment process (120?°C). Based on the analyses of the experimental results regarding the structure and those from the characterization of B-TiO2, and its application to DSSCs, it has been found that the B-TiO2 material has an effect on electron-hole pair separation. The conversion efficiency of the B-TiO2 DSSC (BTiO2-DSSC) was 6.18%, whereas that of the TiO2-P25 DSSC (P25-DSSC) was 3.61%, and that of the TiO2 polymorph DSSC (PTiO2-DSSC) which is the precursor of B-TiO2 was 4.51%.
Keywords:Dye-sensitized solar cell (DSSC)  Oxygen vacancy  Efficiency
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号