首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量回归机和粒子群算法的改进协同优化方法
引用本文:杨希祥,杨慧欣,江振宇,张为华. 基于支持向量回归机和粒子群算法的改进协同优化方法[J]. 湖南大学学报(自然科学版), 2011, 38(3): 34-39
作者姓名:杨希祥  杨慧欣  江振宇  张为华
作者单位:国防科学技术大学,航天与材料工程学院,湖南,长沙,410073
基金项目:国家"863计划"资助项目,中国博士后科学基金资助项目
摘    要:研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,...

关 键 词:协同优化  支持向量回归机  粒子群算法

Improved Collaborative Optimization Based on Support Vector Regression and Particle Swarm Optimization
YANG Xi-xiang,YANG Hui-xin,JIANG Zhen-yu,ZHANG Wei-hua. Improved Collaborative Optimization Based on Support Vector Regression and Particle Swarm Optimization[J]. Journal of Hunan University(Naturnal Science), 2011, 38(3): 34-39
Authors:YANG Xi-xiang  YANG Hui-xin  JIANG Zhen-yu  ZHANG Wei-hua
Affiliation:(Colloge of Aerospace and Material Engineering, National Univ of Defense Technology, Changsha, Hunan410073,China)
Abstract:Improved collaborative optimization based on support vector regression and particle swarm optimization algorithm was researched. The basic principle of collaborative optimization and support vector regression was represented, and in order to resolve the difficulty in system-level coordination, improve convergence performance and efficiency, approximate models of constraint conditions in system-level were constructed using support vector regression, and particle swarm optimization algorithm was introduced to the system-level optimization and disciplinary-level optimization. Simulation results show that the improved collaborative optimization can effectively resolve multidisciplinary design optimization problems, and compared to standard collaborative optimization, optimization accuracy is higher, system-level iterative operation is less, and the stability is better. All those can provide theoretical reference for the research of multidisciplinary design optimization.
Keywords:collaborative optimization   support vector regression   particle swarm optimization
本文献已被 万方数据 等数据库收录!
点击此处可从《湖南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号