首页 | 本学科首页   官方微博 | 高级检索  
     

基于气测资料的储层含油气性识别方法
引用本文:李汉林,连承波,马士坤,刘明炎. 基于气测资料的储层含油气性识别方法[J]. 中国石油大学学报(自然科学版), 2006, 30(4): 21-23,29
作者姓名:李汉林  连承波  马士坤  刘明炎
作者单位:1. 中国石油大学,地球资源与信息学院,山东,东营,257061
2. 胜利石油管理局,山东,东营,257055
摘    要:基于气测资料构造适当的综合指标,分别利用模糊模式识别和误差反向传播(BP)神经网络两种方法对储层含油气性进行了分析。结果表明,气测资料与储层含油气性具有较强的相关性。模糊模式识别方法可以用来确定气测综合指标与储层含油气性之间的模糊关系,而且对待识别样品气测资料的随机性具有较强的适应性;神经网络法能够较准确地建立气测综合指标与储层含油气性之间的非线性关系,但在待识别样品气测资料具有随机性的情况下,识别结果具有随机性:利用模糊模式和BP神经网络方法对储层含油气性进行识别具有一定的可行性,能快速为储层含油气性分析提供一定的参考依据,并且前一种方法的识别效果优于后一种方法。

关 键 词:气测井  BP神经网络  模糊模式识别  含油气储层
文章编号:1673-5005(2006)04-0020-03
收稿时间:2006-03-09
修稿时间:2006-03-09

Identification method of oil-bearing reservoirs based on gas logging data
LI Han-lin,LIAN Cheng-bo,MA Shi-kun,LIU Ming-yan. Identification method of oil-bearing reservoirs based on gas logging data[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2006, 30(4): 21-23,29
Authors:LI Han-lin  LIAN Cheng-bo  MA Shi-kun  LIU Ming-yan
Affiliation:Faculty of Geo-Resource and Information in China University of Petrolewn,Dongying257061,Shandong Province,China;2 Shengli Petrolewn Administration,Dongying 257055,Shandong Province,China
Abstract:The methods of fuzzy model identification and error backpropagation(BP) artificial neural network(ANN) were used to analyze oil-bearing reservoirs based on gas logging information.The results show that there is a noticeable correlativity between gas logging data and oil-bearing reservoirs.The distinction of the principles results in the difference of the identifying results that the former is fuzzy and the latter is random. The fuzzy correlativity between gas logging data and oil-bearing reservoirs can be determined and the random property of gas logging data can be adjusted by fuzzy model.The method of error BP ANN can indicate the non-linear correlation between gas logging data and oil-bearing reservoirs accurately and be hard to adjust the random property of gas logging data.The methods used to identify oil-bearing reservoirs are feasible.The identifying results show that the former method is better than the latter method.
Keywords:gas logging   back-propagation artificial neural network   fuzzy model identification   oil-bearing reservoir
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号