首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Mn_7C_3@C核壳型纳米粒子制备及其超级电容器电极特性
引用本文:Ramon Alberto Paredes Camacho,冯晨辰,吴爱民,黄昊.Mn_7C_3@C核壳型纳米粒子制备及其超级电容器电极特性[J].大连理工大学学报,2016,56(6):567-574.
作者姓名:Ramon Alberto Paredes Camacho  冯晨辰  吴爱民  黄昊
基金项目:中央高校基本科研业务费专项资金资助项目(DUT15LAB05);常州市企业领军型创新人才引进培育计划资助项目(CQ20153002);国家自然科学基金资助项目(51171033).
摘    要:以甲烷作为碳源气体,块体锰作为原料,采用一种简单的直流电弧等离子体法成功制备了Mn_7C_3@C核壳型纳米粒子,用于高性能超级电容器的电极材料.所制备的Mn_7C_3@C核壳型纳米粒子平均直径为30~35nm.拉曼光谱结果显示石墨碳壳具有良好的导电性.通过循环伏安、恒电流充放电及电化学交流阻抗谱对Mn_7C_3@C核壳型纳米粒子电极材料进行电化学性能分析,结果表明其具有高比电容、快速充放电等优异的电化学性能.在扫描速率为1mV/s时,比电容最高可达185.8F/g.同时具有良好的循环稳定性,在100mV/s扫描速率下1 000次循环伏安测试后,比电容仍保持为最初的88%,与单纯Mn_7C_3(79%)相比,有明显提高.Mn_7C_3@C核壳型纳米粒子电极材料优异的电化学性能归因于其良好的核壳结构,富缺陷碳层具有良好的导电性,有助于离子的传输和结构的稳定,而内核Mn_7C_3主要产生赝电容,在C和Mn_7C_3的协同作用下产生双电层和赝电容双模式储能机制.

关 键 词:直流电弧等离子体  Mn  7C  3@C  高比电容  循环稳定性

Synthesis of core-shell Mn 7C 3@C nanoparticles and their electrode characteristics for supercapacitors
Ramon Alberto Paredes Camacho,FENG Chenchen,WU Aimin,HUANG Hao.Synthesis of core-shell Mn 7C 3@C nanoparticles and their electrode characteristics for supercapacitors[J].Journal of Dalian University of Technology,2016,56(6):567-574.
Authors:Ramon Alberto Paredes Camacho  FENG Chenchen  WU Aimin  HUANG Hao
Abstract:Core-shell Mn 7C 3@C nanoparticles are synthesized successfully by a facile DC arc-discharge plasma method with CH 4 as carbon source and block metal Mn as manganese material, which are used as electrode materials for high-performance supercapacitors. The as-prepared Mn 7C 3@C mainly composes of spherical nanoparticles with a mean size of about 30-35 nm. Raman spectra provide enough evidence of high electrical conductivity of the graphitic carbon layers. The electrochemical performance of core-shell Mn 7C 3@C nanoparticles electrode material is tested by cyclic voltammograms, galvanostatic charge-discharge and electrochemical impedance spectroscopy, which shows an excellent electrochemical performance, such as high specific capacitance, rapid charge-discharge and so on. The specific capacitance reaches 185.8 F/g at the scan rate of 1 mV/s. Meanwhile, good cycle stability is obtained, where 88% of the initial specific capacitance is retained after 1 000 cycles at the scan rate of 100 mV/s, significantly improving the Mn 7C 3 nanoparticles performance (79%). The excellent electrochemical response is attributed to a well-defined core-shell structure, where a super-conductive, defect-enriched carbon layer that fastens the ion exchange and provides stability for the structure and the pseudocapacitive contribution from Mn 7C 3 core, which generates an optimal dual energy storage mechanism of double-layer capacitance and pseudocapacitance.
Keywords:DC arc-discharge plasma  Mn 7C 3@C  high specific capacitance  cycle stability
本文献已被 CNKI 等数据库收录!
点击此处可从《大连理工大学学报》浏览原始摘要信息
点击此处可从《大连理工大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号