首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的挤压模具型腔形状优化设计
引用本文:孙宪萍,王雷刚,黄瑶,安晓超,李士战. 基于遗传算法的挤压模具型腔形状优化设计[J]. 江苏大学学报(自然科学版), 2006, 27(6): 513-515
作者姓名:孙宪萍  王雷刚  黄瑶  安晓超  李士战
作者单位:江苏大学,材料科学与工程学院,江苏,镇江,212013;江苏大学,材料科学与工程学院,江苏,镇江,212013;江苏大学,材料科学与工程学院,江苏,镇江,212013;江苏大学,材料科学与工程学院,江苏,镇江,212013;江苏大学,材料科学与工程学院,江苏,镇江,212013
基金项目:国家自然科学基金;江苏大学校科研和教改项目
摘    要:以磨损为目标建立优化数学模型,采用B样条函数插值描述模具型腔轮廓形状,基于有限元和修正的Archard磨损模型计算结果训练BP神经网络,建立模具型腔控制点与目标函数之间的映射关系,计算遗传算法的适应度值,优化模具型腔.研究结果显示:采用本方法得到的模具型腔形状,与锥形模相比,沿其表面最大磨损深度降低了63.9%,磨损深度分布均匀,说明此设计方法可行.

关 键 词:挤压模具型腔  优化设计  遗传算法  BP神经网络
文章编号:1671-7775(2006)06-0513-03
修稿时间:2006-04-10

Optimizing of extrusion die profile based on genetic algorithm
SUN Xian-ping,WANG Lei-gang,HUANG Yao,AN Xiao-chao,LI Shi-zhan. Optimizing of extrusion die profile based on genetic algorithm[J]. Journal of Jiangsu University:Natural Science Edition, 2006, 27(6): 513-515
Authors:SUN Xian-ping  WANG Lei-gang  HUANG Yao  AN Xiao-chao  LI Shi-zhan
Abstract:Based on wear depth on die profile surface,the optimizing mathematical model was built.A method of B-spline function interpolation was used to describe extrusion die profile.The results of FEM simulation and modified Archard theory were applied to train BP neural network.The nonlinear mapping relations between reference points of die profile and wear depth were obtained,the fitness of genetic algorithm was calculated and die profile was optimized.The result shows that the maximum wear depth along the optimal profile,compared with the conical profile,decreases by 63.9% and the distribution of wear depth is more uniform.It shows that the design method is feasible.
Keywords:extrusion die profile  optimum design  genetic algorithm  BP neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号