首页 | 本学科首页   官方微博 | 高级检索  
     

基于AM-LSTM模型的超短期风电功率预测
引用本文:韩朋,张晓琳,张飞,王永平. 基于AM-LSTM模型的超短期风电功率预测[J]. 科学技术与工程, 2020, 20(21): 8594-8600
作者姓名:韩朋  张晓琳  张飞  王永平
作者单位:内蒙古科技大学信息工程学院,包头 014010;华北电力大学可再生与清洁能源学院,北京102206
基金项目:国家自然科学基金项目(61562065)、国家重点研发计划(2017YFE0109000)和内蒙古自然科学基金项目(2019MS06001)
摘    要:
近年来,中国的风力发电产业高速发展。然而风力发电具有不稳定性,风电功率超短期预测结果的准确性直接影响到电网安全有效的运行。为了进一步提高风电功率超短期预测的精确度,提出了长短期记忆网络-注意力模型(AM-LSTM)风电功率预测模型,该模型将长短期记忆网络(long-term and short-term memory,LSTM)和注意力模型(attention model,AM)相结合, LSTM网络能够处理好风速、风向等时间序列变量与风电功率之间的非线性关系,注意力模型能够优化LSTM网络的权重,从而使预测结果更加准确。采用真实的风电场历史数据进行实验,结果表明:提出的AM-LSTM预测模型能够有效利用多变量时间序列数据进行风电场发电功率的超短期预测,比传统的BP神经网络和LSTM网络具有更精确的预测效果。该预测模型为风电场地电力调度提供了科学参考。

关 键 词:长短期记忆网络  注意力模型  多变量时间序列  风电功率  超短期预测
收稿时间:2020-01-07
修稿时间:2020-06-01

Ultra-short-term Wind Power Prediction Based on AM-LSTM Model
hanpeng,zhang fei,wang yongping. Ultra-short-term Wind Power Prediction Based on AM-LSTM Model[J]. Science Technology and Engineering, 2020, 20(21): 8594-8600
Authors:hanpeng  zhang fei  wang yongping
Affiliation:Inner Mongolia University of Science and Technology;North China Electric Power University; Inner Mongolia University of Science & Technology
Abstract:
In recent years, China''s wind power industry has developed rapidly. However, wind power has instability, and the accuracy of ultra-short-term wind power prediction results directly affects the safe and efficient operation of the power grid. In order to further improve the accuracy of wind power ultra-short term prediction, a wind power prediction based on AM-LSTM model was proposed. This model combines long-term and short-term memory network (LSTM) with attention model (AM). In combination, the LSTM network can handle the nonlinear relationship between time series variables such as wind speed and wind direction and wind power, and the attention model can optimize the weight of the LSTM network to make the prediction result more accurate. Experiments using real wind farm historical data show that the proposed AM-LSTM prediction model can effectively utilize multivariate time series data for ultra-short-term prediction of wind farm power generation, which is more accurate than traditional BP neural networks and LSTM networks forecast effect.
Keywords:long-term and short-term memory network   attention model   multivariate time series   wind power   Ultra short-term forecast
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号