首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的深部地层压力预测技术
引用本文:李玮. 基于BP神经网络的深部地层压力预测技术[J]. 科学技术与工程, 2010, 10(21)
作者姓名:李玮
作者单位:1. 大庆钻井生产技术服务公司,大庆,163358
2. 川庆钻探国际工程公司,成都,610051
基金项目:黑龙江省教育厅海外学人科研项目 
摘    要:
地层压力的准确预测是优质高效安全钻井、减少井下复杂情况、合理开发油气层的基础.由于地层压力的实测方法费用较高、周期长,且影响钻井安全,因此提出一种基于神经网络技术的地层孔隙压力预测新方法,并详细论述了神经网络预测模型的建立过程.该方法以声波时差、自然电位、自然伽马数等测井数据及钻杆压力测试数据为学习样本,具有十分高的准确度.对大庆油田萨尔图和杏树岗两个区块的地层压力进行实例预测,预测结果表明,其预测结果与实测结果的相对误差<±8.9%.

关 键 词:地层压力  RFT压力测试  测井曲线  神经网络
收稿时间:2010-04-29
修稿时间:2010-04-29

Pressure Prediction Technology of the Deep Strata, Based On the BP Neural Network
liwei. Pressure Prediction Technology of the Deep Strata, Based On the BP Neural Network[J]. Science Technology and Engineering, 2010, 10(21)
Authors:liwei
Abstract:
The accurate prediction of strata pressure is the base for safely, qualitily, and efficiently drilling, decreasing hole problems and reasonable development of the reservoir. Because of the high cost, long cycle of the formation pressure measured method, which may influences the safety of drilling operation, thus a new method for predicting strata pressure, based on the BP neural network, is presented in this paper, and establishing process of the neural network forecast model are discussed in detail. This method takes the acoustic time, natural potential, natural gamma ray log data and pipe pressure test data as study sample, which has a very high accuracy. The paper predicts strata pressure of the Saertu oil field and Xingshugang oil field in Daqing, and the results show that relative error between the predicted data and experimental data is less than ?.9%.
Keywords:strata pressure   RFT stress test   logging curve   neural network
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号