摘 要: | 由于金属产品生产过程中各种因素的影响,金属工件可能会存在一些表面缺陷.这会降低材料强度,缩短工件寿命,并且增加安全风险.因此,需要对金属产品表面进行质量检测,这也是保证工业生产质量的关键环节.与传统人工检测相比,基于机器视觉的表面缺陷检测方法具有速度快、精度高等优点.提出了一种改进的YOLOv5算法,用于金属表面缺陷检测研究,在原YOLOv5算法的基础上将空间金字塔池化结构SPP替换成SPPCSPC,提高模型对金属表面缺陷的检测能力.为了验证算法的有效性,分别采用YOLOv3,YOLOv4,YOLOv5及改进的YOLOv5算法对1 800张金属表面缺陷样本图像进行对比测试.结果表明,与YOLOv3,YOLOv4,YOLOv5原算法相比,改进的YOLOv5算法平均目标检测精度均值分别提高了4.3%,3.3%,2%.通过大量图片的学习,可以获得更好的精确率.
|