首页 | 本学科首页   官方微博 | 高级检索  
     

基于压力采集和FEM模型的软组织参数测量方法
引用本文:廖祥云,袁志勇,陈二虎,郑奇. 基于压力采集和FEM模型的软组织参数测量方法[J]. 东北大学学报(自然科学版), 2015, 36(9): 1246-1250. DOI: 10.3969/j.issn.1005-3026.2015.09.007
作者姓名:廖祥云  袁志勇  陈二虎  郑奇
基金项目:国家自然科学基金资助项目(61372107);国家重点基础研究发展计划项目(2011CB707904); 北航虚拟现实技术与系统国家重点实验室开放课题基金资助项目(BUAA-VR-13KF-15).
摘    要:提出基于压力采集和FEM模型的软组织参数测量方法,搭建基于光学运动跟踪系统和压力采集模块的软组织参数测量平台,对软组织形变过程三维重建,通过带压力传感器的ARM采集板获取压力值,采用BP神经网络对传感器进行精度校正.基于软组织形变集合构建四面体有限元模型计算软组织的初始参数弹性模量与泊松比,并提出一种参数参照模型对初始参数进行修正,通过实验验证参数的准确性.实验结果表明,用所述方法求得的软组织参数计算的软组织形变与真实测量所得软组织形变的平均相对误差为1.03%~1.60%,符合实际工程应用对软组织形变的精度要求.

关 键 词:软组织参数测量  压力采集  参数参照模型  有限元  BP神经网络  

Soft Tissue Parameter Measurement Based on Pressure Acquisition and FEM Model
LIAO Xiang-yun,YUAN Zhi-yong,CHEN Er-hu,ZHENG Qi. Soft Tissue Parameter Measurement Based on Pressure Acquisition and FEM Model[J]. Journal of Northeastern University(Natural Science), 2015, 36(9): 1246-1250. DOI: 10.3969/j.issn.1005-3026.2015.09.007
Authors:LIAO Xiang-yun  YUAN Zhi-yong  CHEN Er-hu  ZHENG Qi
Abstract:A method of soft tissue parameter measurement was proposed based on pressure acquisition and FEM model, which included a soft tissue parameter measurement platform based on optical motion tracking system and pressure acquisition module. The soft tissue deformation was reconstructed in three dimensions, and the pressures on the soft tissue were obtained by an ARM acquisition board with a pressure sensor whose precision was calibrated with the BP neural network. Then a tetrahedral finite element model was built to calculate the initial parameters (Young’s modulus and Poisson rates) of the soft tissue and a parameter reference model was proposed to obtain the modified parameters whose accuracy was verified experimentally. The experimental results indicated the average relative deviation between calculated deformation and measured deformation is 1.03%~1.60%, which satisfies the accuracy requirements of soft tissue deformation in practical engineering applications.
Keywords:soft tissue parameter measurement  pressure acquisition  parameter reference model  finite element  BP neural network  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号