首页 | 本学科首页   官方微博 | 高级检索  
     

非线性、大滞后系统神经网络辨识研究
作者姓名:杨继峰
作者单位:中国石油大学(华东)
摘    要:基于神经网络的非线性、大滞后系统辨识是当前研究的热点之一,介绍了神经网络辨识的基本原理,研究了BP与RBF神经网络两种典型网络的设计和算法,最后通过MATLAB进行了仿真分析与比较。仿真结果表明:一致性方面RBF优于BP神经网络,RBF神经网络收敛速度更快,辨识效果更好;泛化性能方面RBF网络较差,不如BP网络。由此得出两种网络各自的优缺点,在实际应用中可以此作为神经网络模型辨识的参考。

关 键 词:系统辨识  BP神经网络  RBF神经网络
收稿时间:2012-04-18
修稿时间:2012-04-27
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号